Visualizza articoli per tag: statistica

Mercoledì, 06 Giugno 2018 00:00

Informatica maggio 2018

Verifica di informatica, classe prima liceo scientifico.
Argomento: utilizzo di Excel e Geogebra, statistica.

Durata: un'ora.

Pubblicato in Esercizi
Mercoledì, 12 Aprile 2017 00:00

Ellisse e iperbole aprile 2017

Verifica di matematica, classe terza liceo scientifico.
Argomento: geometria analitica, statistica.

Durata: due ore.

Pubblicato in Esercizi
Giovedì, 28 Maggio 2015 00:00

Informatica maggio 2015

Verifica di informatica, classe prima liceo scientifico. 
Argomento: utilizzo del foglio elettronico e di Geogebra.

Durata: un'ora.

Pubblicato in Esercizi
Etichettato sotto
Lunedì, 19 Agosto 2013 19:59

L'ansia e la matematica

L'ansia, la matematica e la voglia di imparare, ovvero: in che misura le nostre paure possono compromettere la nostra capacità di imparare la matematica.
Tesina realizzata al termine dell'anno di ruolo, a.s. 2004/2005. 

Modifica del 25 agosto 2024: Alcune mie idee sono cambiate da allora e tra le cinque capacità fondamentali che ho elencato per imparare la matematica metterei ora qualcosa di diverso: continuerei a mettere l'impegno, che ritengo irrinunciabile, unito alla tenacia e alla determinazione. Se ripenso al mio percorso universitario (il momento in cui mi sono confrontata in modo più faticoso con la matematica), ho sempre detto che la mia laurea è stata il frutto della mia capacità di "abbattere muri a testate", perciò sono convinta che senza impegno non si possa andare in nessun luogo. Non metterei più l'intuizione, perché l'esperienza mi ha insegnato che gli alunni che io ho ritenuto poco intuitivi erano, in fondo, solo vittime di un approccio sbagliato alla disciplina e, spesso, di uno scarso impegno: non è il talento (ammesso che esista) a fare la differenza, ma la volontà di riuscire. Metterei ancora l'elasticità mentale, anche se forse porrei l'accento sulla creatività. E non so se citerei la precisione o la capacità di assimilazione (che cosa intendevo realmente con questa cosa? Non lo ricordo... ). Credo, infine, che la chiave per il successo sia stata che avevo un sogno: volevo fare l'insegnante di matematica e l'unico modo per diventarlo era la laurea in matematica, ecco perché non ho mai pensato di mollare. E l'ho ribadito in questo articolo sull'inesauribile caparbietà.
Riassumento, quindi, ecco i miei ingredienti per una buona riuscita in matematica: impegno, tenacia e determinazione, elasticità mentale e creatività, capacità di sognare.  

Indice:

La sfida educativa
L'apprendimento
La matematica dal punto di vista dell'insegnante
La matematica dal punto di vista degli alunni
La rilevazione dell'ansia da apprendimento
Conclusioni

Bibliografia:

-      Gian Carlo Rota, citato in Mauro Cerasoli, Il fascino discreto di Gian Carlo Rota, cfr http://xoomer.virgilio.it/vdepetr/Art/Text10.htm
-      Federico Peiretti, La matematica fra le nuvole, articolo tratto da “La Stampa” del 19/02/2003
-      Mauro Cerasoli, Consigli per amare la Matematica, cfr http://xoomer.virgilio.it/vdepetr/Art/Text16.htm
-      Mario Di Mauro, Ricercare in educazione. Come sperimentare l’esperienza di insegnante, 2003
-      Mauro Cerasoli, Riflessioni didattiche su alcune statistiche dell’esame di stato di matematica
-      P. Merieu, I compiti a casa. Genitori, figli, insegnanti: a ciascuno il suo ruolo, Milano, Feltrinelli, 2002
-      http://cepad.unicatt.it/formazione/antonietti/SARA/rifless2.htm
-      Laura Catastini, Neuroscienze, apprendimento e didattica della matematica, cfr http://www.mat.uniroma2.it/LMM/BCD/SSIS/Neurosc/Indice.htm
-      Piergiorgio Odifreddi, La matematica del Novecento, Piccola Biblioteca Einaudi Scienza, Torino, 2000, Prefazione di Gian Carlo Rota
-      Lucangeli D., Pedrabissi L. (1997), Componenti cognitivo-motivazionali del successo/insuccesso in matematica: un’indagine esplorativa, Ricerche di Psicologia, 21, 3, pp. 59-74
-      Manuela Saccani, Cesare Cornoldi, Ansia per la matematica: la Scala MARS-R per la valutazione e l’intervento metacognitivo, Difficoltà in matematica 2/1 feb. ’05 – Erickson
-      Roberta Rizzato, Rossana De Beni, Motivazione e autostima a scuola, Difficoltà di apprendimento 10/1 ott. ’04 – Erickson
-      Brunetto Piochi, Insegnare e apprendere la Matematica, www.puntoedu.it, materiali per il corso di formazione neoassunti 2004/2005

Pubblicato in Articoli
Etichettato sotto
Martedì, 06 Agosto 2013 00:00

Informatica e statistica maggio 2013

Verifica di informatica, classe prima liceo scientifico
Argomento: Geogebra, Excel, statistica

Durata: un'ora

Pubblicato in Esercizi
Etichettato sotto
Venerdì, 02 Agosto 2013 15:00

Le bugie della statistica

TRAMA:
Grazie al nostro analfabetismo matematico, e statistico in particolare, i mezzi di informazione possono farci credere qualsiasi cosa, purché preceduta/seguita da percentuali. In particolare, nonostante i numeri siano frutto di valutazioni approssimative, più un numero è “ricco” di cifre decimali, più ci fidiamo, perché siamo convinti che i numeri siano un riferimento oggettivo. Eppure, uno stesso numero è più grande o più piccolo a seconda di ciò a cui viene paragonato: un incremento risulta maggiore se paragonato a una base di partenza molto bassa, un decremento è minore se paragonato alla stessa base. Se crediamo ad ogni cosa senza porci il problema del confronto, possiamo arrivare a credere che un’azienda potenzialmente in crisi sia in realtà in netta ripresa oppure che gli ospedali siano luoghi pericolosi, visto l’elevato numero di decessi. Nello stesso calderone entrano le percentuali, che nascondono la base cui la quota si riferisce. Altro numero che dà l’illusione dell’oggettività è la media: spesso dimentichiamo che due medie uguali possono nascere da due distribuzioni di dati completamente diverse e che quindi la media da sola non può darci indicazioni assolute. 
L’ignoranza in termini di geometria analitica permette di modificare la realtà mediante un diagramma cartesiano, spesso trasformato con tagli delle ordinate e allungamento delle ascisse per accentuare fenomeni di crescita, o tagliando le colonne per dare l’illusione di distanza, laddove c’è una grande vicinanza. Le trappole delle rappresentazioni grafiche si fanno sentire anche nei pittogrammi, nei quali ad esempio si rappresenta un quantitativo in denaro con una banconota da 50 euro: se si vuole presentare il confronto tra due quantità, una doppia dell’altra, bisogna considerare che non è corretto raddoppiare le singole dimensioni, perché in questo modo le due quantità confrontate sono una quadrupla dell’altra. Analogo problema si presenta con i volumi.
Un altro errore delle statistiche si esprime nelle previsioni per il futuro, estrapolando dai dati attuali l’andamento di un determinato evento. L’estrapolazione sfrutta un tipico errore di tutti noi, ovvero la convinzione che tutto continuerà ad essere e ad evolversi come è successo fino ad ora. Così si parla di esplosione demografica quando, per un certo periodo di tempo, c’è stato un aumento delle nascite, viceversa si parla di calo. In un’affannosa ricerca di certezze, si dimentica che quanto più lungo è il periodo sul quale si azzarda una previsione, tanto più è difficile che la previsione si avvicini alla verità (come ci insegnano i meteorologi…). Insomma, non si può parlare di certezza, laddove c’è solo una tendenza.
Le statistiche basano i propri asserti sulle indagini. Tali indagini non si rivolgono a tutto l’universo statistico ma solo ad un campione, non sempre attendibile e che può essere cambiato a statistica ultimata, modificando il risultato ottenuto secondo il proprio comodo. Inoltre la formulazione delle domande può portare alle risposte che si stanno cercando, oppure gli intervistatori influenzano le risposte del campione… infine non ci si può fidare ciecamente delle risposte che si raccolgono, perché non è sicuro che l’intervistato sia stato sincero.
È sicuro, comunque, che non potremo mai conoscere con esattezza il numero dei disoccupati, visto che la disoccupazione è un concetto vago, che presenta decine di definizioni, allo stesso modo della povertà, o del prodotto interno lordo di un paese. La vaghezza dei concetti offre una ghiotta opportunità a coloro che vogliono manipolare i dati per truffare qualcuno.
Infine, la correlazione offre errori decisamente frequenti: il fatto che due eventi siano correlati, ovvero che subiscano modifiche contemporaneamente, non significa che siano l’uno la causa dell’altro. Bisogna tener conto di tutte le variabili che intervengono, altrimenti si giungerà ad una serie di conclusioni errate.
 
COMMENTO:
Un vademecum efficace per evitare di farsi confondere le idee dalle mille statistiche che vengono presentate ogni giorno dai mass media. “Spesso usiamo le statistiche per sostenere una tesi già decisa in partenza, e non per provare a mettere alla prova un’ipotesi”, come ci dice Andrea Gilardoni nella sua introduzione intitolata, non a caso, “Un kit di sopravvivenza per il cittadino”. Un po’ di attenzione e una competenza matematica di base possono aiutare a orientarsi tra gli innumerevoli messaggi di cui siamo destinatari e questo libro ha proprio lo scopo di aprirci gli occhi, considerato che “per smascherare questi metodi non è necessario aver studiato statistica”.
Interessanti le indicazioni di approfondimento al termine di ogni capitolo: in questo modo gli spunti offerti possono essere indagati a proprio piacimento.
Pubblicato in Libri
Etichettato sotto
Pagina 2 di 2

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy