Visualizza articoli per tag: matematica

Venerdì, 02 Dicembre 2022 16:08

30 novembre 2022

Verifica di matematica, classe seconda liceo scientifico.
Argomento: semplificazione di radicali.

Durata: 15 minuti.

Pubblicato in Esercizi
Etichettato sotto
Giovedì, 24 Novembre 2022 15:32

23 novembre 2022

Verifica di matematica, classe seconda liceo scientifico.
Argomento: condizioni di esistenza dei radicali.

Durata: 20 minuti.

Pubblicato in Esercizi
Etichettato sotto
Venerdì, 18 Novembre 2022 16:02

16 novembre 2022

Verifica di matematica, classe prima liceo scientifico.
Argomento: monomi.

Durata: 10 minuti.

Pubblicato in Esercizi
Etichettato sotto
Domenica, 06 Novembre 2022 18:18

3 novembre 2022

Verifica di matematica, classe seconda liceo scientifico.
Argomento: sistemi lineari.

Durata: 60 minuti.

Pubblicato in Esercizi
Etichettato sotto
Giovedì, 03 Novembre 2022 12:58

3 novembre 2022

Verifica di matematica, classe prima liceo scientifico.
Argomento: insiemi e logica.

Durata: 60 minuti.

Verifica di recupero per gli assenti del 7 novembre

Pubblicato in Esercizi
Etichettato sotto
Venerdì, 07 Ottobre 2022 20:43

6 ottobre 2022

Verifica di matematica, classe prima liceo scientifico.
Argomento: insiemi numerici.

Durata: 60 minuti.

Pubblicato in Esercizi
Etichettato sotto
Mercoledì, 05 Ottobre 2022 22:12

5 ottobre 2022

Verifica di matematica, classe seconda liceo scientifico.
Argomento: relazioni e funzioni.

Durata: 70 minuti.

Pubblicato in Esercizi
Giovedì, 01 Settembre 2022 17:13

29 agosto 2022

Verifica di matematica, classe prima liceo scientifico.
Argomento: prova di recupero del debito.

Durata: 120 minuti.

La prova non è stata assegnata integralmente: agli alunni coinvolti sono stati assegnati alcuni degli esercizi (non tutti), a seconda degli argomenti che dovevano recuperare.

Pubblicato in Esercizi
Etichettato sotto
Martedì, 23 Agosto 2022 08:19

Matematici a fumetti

«Matematici a fumetti» è stato pubblicato a ottobre 2021 dalla Casa Editrice Dedalo. È stato illustrato da Andrea De Carli, docente di educazione visiva presso le scuole medie in Svizzera e alla sua prima esperienza con i fumetti, e scritto da Silvia Sbaragli, professoressa di matematica, responsabile del centro competenze didattica della matematica del Dipartimento di formazione e apprendimento di Locarno in Svizzera e autrice, insieme a Bruno D’Amore, della quadrilogia «La matematica e la sua storia», sempre per Dedalo.

Questo simpatico fumetto ha per protagonisti Ellie e suo zio Angelo. Quest’ultimo, vedendo la nipote litigare con i compiti di matematica, decide di proporle l’utilizzo di un paio di occhiali matematici virtuali, in modo che possa cambiare idea. Il percorso è costituito da venti storie dedicate ad altrettanti matematici: per ognuno di essi è stato scelto l’aneddoto che meglio lo identifica e caratterizza, in modo da poter essere contenuto in due tavole. Al termine, c’è una pergamena, nella quale sono riportate curiosità, ulteriori spiegazioni o sfide per il lettore in forma di giochi e quesiti. In apertura, troviamo una linea del tempo, nella quale vengono aggiunti i singoli matematici man mano si procede nella narrazione.
Il percorso comincia con la geometria, con l’applicazione dei problemi di massimo e minimo, ovvero con la famosa fondazione della città di Cartagine realizzata grazie all’astuzia di Didone nel IX sec. a.C.; Talete, invece, riesce a ideare il teorema che da lui prende il nome, misurando l’altezza della piramide di Cheope nel VII sec. a.C.; Pitagora ci descrive un mondo basato sui numeri, come dimostrato dalla sua musica; Socrate con la maieutica aiuta Ellie a trovare un quadrato di area doppia di quello dato, come è avvenuto nel dialogo del “Menone” scritto da Platone, mentre il suo contemporaneo Ippocrate tenta di risolvere la quadratura del cerchio attraverso le lunule. Platone illustra i suoi poliedri regolari ed Euclide, che rischia di mandare in crash gli occhiali virtuali di zio Angelo per colpa degli onnipresenti Elementi, ci mostra le costruzioni con riga e compasso. Non possono poi mancare Archimede, che Ellie incontra mentre corre nudo per le strade di Siracusa urlando “Eureka”, un modo per mettere in evidenza i suoi metodi creativi, e Ipazia, seconda donna di questo percorso, che ipotizza le orbite ellittiche per i pianeti e ci parla delle coniche. Al-Khwārizmī sposta l’attenzione verso l’algebra, quando nel IX secolo gli studi matematici vengono portati avanti grazie agli Arabi. Trait d’union tra il mondo arabo e l’Europa è Fibonacci, che con il suo Liber Abaci propone il sistema numerico indo-arabico e che è ricordato per la sua celebre successione. Il dodicesimo matematico è Luca Pacioli, che ritroviamo in compagnia di Leonardo da Vinci mentre studiano la sezione aurea, e si procede poi con Galileo Galilei, che nel XVI secolo parla di un universo scritto in caratteri matematici. Eulero è il primo principe dei matematici che incontriamo in questo percorso: suscita l’invidia di Ellie grazie alla sua abilità nel gestire più cose contemporaneamente (cosa non farebbe Ellie! E senza dover rinunciare a Minecraft!) e, visto il grande numero di lavori portati a termine, sembra difficile anche per gli autori compiere una scelta, e così ritroviamo la topologia dei ponti di Königsberg, la relazione di Eulero e i diagrammi per gli insiemi. Incontriamo il secondo principe dei matematici quando aveva nove anni: Carl Friedrich Gauss riesce a sommare i numeri naturali da 1 a 100, stupendo il suo insegnante, ma non mancano i riferimenti al poligono di 17 lati costruito a diciannove anni, e altri importanti risultati come la curva gaussiana. Il percorso procede con Möbius e con il suo nastro, che apre la via al cortocircuito mentale dato dagli infiniti di Georg Cantor, presentati graficamente in modo particolarmente efficace. La partita a scacchi tra Ellie e lo zio li guida da John von Neumann che insieme a Oscar Morgenstern sta aprendo la strada alla teoria dei giochi, mentre Alan Turing ci guida nel mondo della crittografia e della Seconda guerra mondiale, quando è riuscito a sconfiggere la macchina Enigma. Il percorso aperto da una donna, Didone, si chiude con un’altra celebre donna, Maryam Mirzakhani, che ha cominciato la sua carriera vincendo due volte le Olimpiadi della matematica e arrivando fino alla Medaglia Fields, prima donna a ricevere l’ambito premio. Dopo aver superato le proprie difficoltà con la matematica, grazie all’incontro con questi importanti matematici, Ellie ha davanti a sé un futuro brillante. Al termine, vengono regalati al lettore alcuni suggerimenti su come realizzare dei fumetti e viene fornito un piccolo vocabolario al riguardo.

Questo fumetto ci permette di conoscere le caratteristiche principali dei matematici scelti e stuzzica la nostra curiosità attraverso gli aneddoti presentati. Forse all’inizio possiamo condividere lo sconcerto di Ellie quando intuisce la passione che li anima, ritenendo impossibile appassionarsi a una disciplina da lei considerata noiosa, oppure ci stupiremo di come anche un problema senza soluzione possa aprire la strada a grandi scoperte e non potremo che guardare con meraviglia i metodi creativi di Archimede. Il percorso scelto guida il lettore dalle origini della matematica, fino alle applicazioni moderne, come la teoria dei giochi, rendendolo consapevole che la matematica si nasconde ovunque.
La lettura di questo libro può essere un’occasione di svago per gli adulti, e un modo per i ragazzi per incontrare venti personaggi che hanno fatto la storia della matematica. Silvia Sbaragli ha scelto sapientemente sia la rosa di matematici da proporre sia l’aneddoto con cui caratterizzarli, appassionando, coinvolgendo e regalando al lettore un’immagine della matematica a tutto tondo.

Pubblicato in Libri
Etichettato sotto
Giovedì, 18 Agosto 2022 08:28

Il potere dell'infinito

«Il potere dell’infinito» è stato pubblicato a febbraio 2021 da Codice Edizioni. L’autore, Steven Strogatz, ha scritto anche La gioia dei numeri, pubblicato per Einaudi nel 2013. Docente alla Cornell University, è un abile comunicatore scientifico, come dimostrano i suoi articoli sul New York Times.

L’obiettivo principale del libro è dichiarato a più riprese: «Mostrare il calcolo infinitesimale come un insieme, trasmettere il senso della sua bellezza, della sua unità e della sua grandezza» ed è stato pienamente raggiunto grazie a immagini, metafore e aneddoti. Nel suo percorso, Strogatz non ci risparmia equazioni e dimostrazioni, che ritiene siano le opere presenti nella galleria d’arte della matematica, ma al tempo stesso non insiste sui procedimenti di calcolo, così come un cuoco non ha bisogno di spiegare la ricetta per far apprezzare il piatto di alta cucina che ha appena preparato. In questo modo, l’autore ci rende accessibili le grandi idee e le vicende che fanno da sfondo allo sviluppo del calcolo infinitesimale. Nel suo racconto, spiccano la genialità degli approcci dei singoli matematici e l’aumento dell’astrazione ad ogni passo, mentre possiamo gustare i singoli passaggi attraverso la viva voce degli autori, nelle lettere da loro scritte.
Come mostrato dal titolo, il filo conduttore è l’infinito, e lo scopriamo fin dalle pagine dell’introduzione, dove viene presentato il principio dell’infinito, il punto di forza del calcolo infinitesimale, ovvero la scomposizione del problema in «porzioni così piccole che è difficile anche solo immaginarle, fino ad averne un numero infinito». Questa prima fase corrisponde al calcolo differenziale e ad essa fa seguito una «addizione infinita, che reintegra le parti nell’insieme iniziale», ovvero il calcolo integrale. Nella narrazione, Strogatz ripercorre la storia della matematica partendo dalla sorgente del calcolo infinitesimale, fino alle sue applicazioni, come l’animazione digitale, la chirurgia estetica, il GPS, la cura dell’HIV, il funzionamento del Boeing 787, lo sviluppo degli strumenti diagnostici come la TC e la PET, la ricostruzione del DNA, il funzionamento del forno a microonde e il radar.

Il primo capitolo è dedicato all’infinito, descritto alla maniera di Aristotele come potenziale e completato, e mostrato nella sua pericolosità nei paradossi di Zenone. Nel secondo capitolo, incontriamo Archimede, del quale viene descritto dettagliatamente il metodo geniale, dopodiché, con un salto di 1800 anni, possiamo incontrare Galileo Galilei e Keplero, che stimolano la nascita di nuovi strumenti matematici per poter descrivere e risolvere problemi inerenti al movimento. Nel quarto capitolo, conosciamo il calcolo delle tangenti realizzato da Cartesio e Fermat. Quest’ultimo, anche se con un approccio da dilettante, riesce a gettare «le basi del calcolo infinitesimale nella sua forma moderna» e vince lo scontro con Cartesio grazie alla semplicità, all’eleganza e alla bellezza del suo approccio. Il quinto capitolo è dedicato al ripasso delle funzioni, mentre il sesto ci permette di cogliere il cambiamento che sta avvenendo e ci presenta la derivata senza calcolarla, agendo sulla rappresentazione grafica della funzione come se si utilizzasse un microscopio. Solamente al settimo capitolo, ben oltre la metà del libro, incontriamo quello che viene classicamente considerato l’inventore del calcolo infinitesimale, Newton, che di fatto unifica, sintetizza e generalizza il lavoro fatto dai predecessori, costruendo il metodo delle flussioni. Dopo di lui, Leibniz lavora con i differenziali: dato il suo approccio originale viene considerato il coinventore del calcolo infinitesimale e, di fatto, il vincitore (se si può parlare di una gara), vista la notazione elegante e ben curata, che sulla lunga distanza riuscì ad affermarsi. Il nono capitolo è dedicato all’universo logico ed è la dimostrazione di come questa matematica, nonostante la sua astrazione, ci permetta di descrivere in modo dettagliato la natura. Il decimo capitolo è dedicato a Fourier, che con la grande intuizione delle onde sinusoidali stazionarie riesce a sintetizzare le onde più complicate, aprendoci al futuro descritto dall’undicesimo capitolo e alla dimostrazione della «inquietante efficacia» della matematica, che nella conclusione è mostrata attraverso tre applicazioni: l’elettrodinamica quantistica, l’antimateria e le onde gravitazionali.

Il libro offre un percorso impegnativo anche a causa dell’elevata densità dei contenuti, visto che in questa cavalcata attraverso la storia del calcolo infinitesimale Steven Strogatz non tralascia nulla. È proprio la densità di questo libro che obbliga il lettore a procedere con calma e a gustarsi ogni aspetto che l’autore ha voluto condividere. Una lettura sicuramente consigliata anche ai non addetti ai lavori, visto che per poter seguire il percorso non è necessario conoscere nulla più del calcolo algebrico.

Pubblicato in Libri
Pagina 1 di 23

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy