Martedì, 02 Luglio 2024 08:24

224 - 2 luglio 2024

Studiare la prospettiva per progettare i laboratori di BergamoScienza mi ha fatto cogliere quanto sia determinante il punto di vista. Come ogni anno, parecchio viene detto e scritto sulla prova di matematica dell’Esame di Stato al liceo scientifico, perciò avrete già avuto modo di trovare tutto e il contrario di tutto. Il giudizio sull’eventuale difficoltà della prova dipende da tanti fattori e, anche se il punto di vista è lo stesso (ad esempio: docenti che insegnano allo scientifico), l’opinione cambierà in base alla propria esperienza.

Il primo commento della prova nel quale mi sono imbattuta è stato quello di Davide Calza, del Math-Segnale, che in un lungo post su Facebook, scritto di getto all’indomani della prova, ha confermato i miei sospetti, ovvero che la prova fosse composta per metà da argomenti trattati negli anni precedenti, perché la matematica «è una costruzione continua». Non entro nei dettagli, l’ha già fatto Davide, ma vorrei far notare come queste scelte mostrino, ancora una volta, l’importanza della geometria euclidea, anche solo come sostegno nell’affrontare gli esercizi: è un metodo di ragionamento, ma è anche un’arma in più che è fondamentale aggiungere al proprio arsenale lungo il percorso liceale.
La prova era fattibile, ma, certo, molto dipendeva dalle scelte del singolo: in questo, è fondamentale possedere una buona consapevolezza dei propri punti di forza e delle proprie debolezze, anche se si ha tutto il tempo per leggere con attenzione il testo. Se ci si limita a studiare meccanicamente i contenuti, nel corso del quinquennio, senza lasciare il tempo perché i contenuti si depositino, se non si sono recepiti fino in fondo i capisaldi della disciplina, allora non c’è modo di svolgere con serenità questa prova. Condivido, a questo proposito, una parte della chiusura del post di Davide, che ci parla della sua passione: «la matematica non è fatta di “capitoli” da studiare e dimenticare, ma è una costruzione continua, in cui ogni pezzo poggia o si intreccia coi precedenti, spesso in modo imprevedibile» ed è per questo, forse, che è tanto odiata. In classe, spesso, la paragono all’amica/o che, dopo che tu non ti sei fatto vivo per un po’, devi faticare a riconquistare, ma Davide va ben oltre, paragonando la costanza richiesta dalla matematica alla costanza necessaria per seguire una serie tv: «Vivetela in modo positivo, come scegliete di vivere una serie TV! Bramate di vedere l'episodio! Stoppate e riguardatelo più volte per scovare ogni dettaglio, ogni bellezza, ogni inaspettato Easter egg piazzato lì dall’autore! Desiderate con ardore l’uscita del nuovo episodio e incazzatevi se qualcuno lo ritarda! Siate tristi quando finisce una stagione, ma vivete anche con passione l’attesa della stagione successiva, per vedere cosa succederà, per capire quali colpi di scena ci saranno!»
Mi è piaciuto molto anche il commento di IlariaF Math: anche lei definisce la prova fattibile ed il suo commento è quello di chi ha corretto la prova come commissario esterno. «Ho apprezzato molto la presenza nel testo di citazioni dettate da matematici importanti per la storia» che «ci aiutano a capire che la matematica non cade dal cielo: è legata a uomini e donne che si sono chiesti il perché delle cose e con creatività ci hanno consegnato quello che oggi conosciamo della matematica». 

Adeguarsi ai tempi
Parlare della seconda prova riconduce necessariamente a una riflessione didattica: al termine dell’anno scolastico, ho somministrato, con i colleghi delle classi parallele, una prova finale e ho avuto modo di rendermi conto di come uno studio a singhiozzo, che avviene solo in prossimità delle prove di verifica, non possa portare ad una reale assimilazione dei contenuti. Per questo motivo, anche il quesito numero 7 della seconda prova, riguardante l’equazione di un’ellisse, poteva sembrare al di fuori della propria portata, pur riconoscendone la semplicità, in quanto troppo lontano nel tempo. Ciò che mi ha colpito, osservando i risultati delle classi a me vicine, è stata la polarizzazione dei risultati: ci sono stati risultati eccelsi o risultati gravemente insufficienti, forse proprio per la differenza tra chi ha studiato con continuità nel corso del quinquennio e chi si è limitato ad accumulare sufficienze risicate.
Vi consiglio di leggere i commenti al post di Davide, perché offrono un’ampia riflessione. Tra di essi, si può trovare quello di Rocco Dedda, Un quarto d’ora con il Prof, che ribadisce un aspetto importante: «sulla didattica siamo a un bivio: gli studenti non apprendono, nel complesso, come facevamo noi, dalla nostra generazione a quelle precedenti. Credo sia tempo di accettarlo e di metterci, come categoria, completamente in discussione, se non vogliamo che i gap vengano colmati con la memoria e che inevitabilmente ci sia un calo nella difficoltà dei contenuti proposti». (Su RaiNews è possibile vedere una traccia della soluzione del secondo problema proposta da Rocco Dedda).
È interessante anche il video proposto da Federico Benuzzi La scuola deve (?) cambiare: non è direttamente legato alla prova di matematica della maturità, ma offre un interessante punto di vista, nell’ambito della didattica. Tutto parte da un video di Mirko Mazzon che sostiene che la scuola dovrebbe cambiare per adeguarsi all’evoluzione del mondo. Se da un lato è vero, dall’altro, secondo l’opinione di Federico Benuzzi (che io condivido) bisogna rivalutare l’importanza del tempo. Per poter accedere a certe competenze, per poter davvero imparare la matematica, è necessario concedersi del tempo. Se è vero che per la generazione precedente l’attesa è stata una necessità, è anche vero che la velocità di oggi ci ha portato a una riduzione dell’attenzione: «il fatto che siamo abituati a video brevi ha portato a far sì che l’attenzione quadratica media sia diventata quella di Dory la pesciolina: basta un attimo per distrarsi». La società sta cambiando, ma non sempre è necessario che la scuola si adegui a questo cambiamento, propendendo per il tecnologico a scapito di carta/penna o lavagna/gessetti. Il gesto di scrivere ci restituisce quella lentezza che abbiamo perso per strada e aiuta ciò che apprendiamo ad «essere introiettato in modo più efficace». (Già che parlo di Federico Benuzzi: è cominciata una nuova serie su YouTube, La matematica dei giocolieri

La bellezza della matematica
La scelta di proporre delle citazioni nel testo della prova ha stupito: le citazioni sono di Ennio De Giorgi e di Godfrey Hardy, «nella prima la matematica è correlata al mistero della conoscenza, nella seconda alla bellezza». Un commento in proposito ci viene proposto dalle pagine di MaddMaths! scritto da Sandra Lucente: Sandra ha apprezzato le citazioni, e non solo perché una delle due era di De Giorgi, «uno dei pensatori del Novecento che ogni studente dovrebbe leggere». Oltre a riconoscere, in quella proposta, «una prova abbastanza standard», viene sottolineato come essa ripercorra il quinquennio non solo attraverso i contenuti, ma anche per il nuovo «approccio culturale alla matematica». Forse questo potrebbe costituire un ponte verso il futuro, un invito ad approfondire il pensiero di De Giorgi e a scoprire che la citazione è incompleta: «All’inizio e alla fine abbiamo il mistero. [Potremmo dire che abbiamo il disegno di Dio.] A questo mistero la matematica ci avvicina, senza penetrarlo». In realtà, parlare di mistero e basta in qualche modo ha concesso ad ognuno di noi la possibilità di una lettura personale facendo propria questa frase. È quello che è successo ad Alberto Saracco, intervistato a Radio3 Scienza nella puntata Fare i conti con la bellezza. Anche Alberto Saracco dichiara di aver avuto un’impressione positiva del compito e di avervi trovato una celebrazione della bellezza. E a chi protesta contro la difficoltà del testo, risponde con una citazione di John von Neumann: «Se le persone credono che la matematica non sia semplice, è soltanto perché non si rendono conto di quanto la vita sia complicata». 

La matematica ovunque
La prova orale dell’Esame di Stato consiste nell’assegnazione di un documento, che può essere una fotografia, un’opera d’arte, una citazione o un articolo di giornale, al candidato, il quale deve costruire un percorso che colleghi le singole discipline oggetto d’esame al documento. In un liceo linguistico non è certo facile sentire degli approfondimenti di matematica, come avevo già avuto modo di notare l’anno scorso, perciò ho deciso di scegliere i mie collegamenti, quelli cioè che, in un modo ideale, mi sarebbe piaciuto sentir raccontare. Ho collegato la Rivoluzione russa a Igor Tamm, l’eterno ritorno di Nietzsche alle funzioni biunivoche, Dickens a Ian Stewart con il bellissimo Teorema di Natale di Fermat, Jane Eyre a Mary Everest Boole, Il ritratto di Dorian Gray a Godfrey Hardy, la dittatura alla democrazia impossibile, l’assurdo di Camus al suicido di Alan Turing… Ho costruito questi collegamenti in quattro diversi articoli, uno per ogni giornata d’esame, in maniera tale da fornire qualche spunto o semplicemente per permettere a chiunque di notare come la matematica sia davvero ovunque. 

Matematica danzante per chiudere in leggerezza
Ho l’occasione di chiudere in bellezza questa newsletter: visto il ritardo nell’invio (l’articolo ha avuto una gestazione più lunga del previsto), posso condividere la nuova puntata di Matematica danzante pubblicata ieri. Dopo un lungo periodo di assenza, Raffaella Mulas ci ripaga dell’attesa parlando di Paul Erdős, con il suo stile tipico, ovvero con leggerezza e allegria. Paul Erdős è stato un matematico originale e unico, e, nel corso del video, scopriamo che il numero di Erdős di Raffaella Mulas è 3. Complimenti! 

Buona matematica e buon cammino! Ci sentiamo tra TRE settimane!

Daniela

Letto 222 volte Ultima modifica il Martedì, 02 Luglio 2024 10:46
Altro in questa categoria: « 223 - 9 giugno 2024

Lascia un commento

Assicurati di aver digitato tutte le informazioni richieste, evidenziate da un asterisco (*). Non è consentito codice HTML.

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy