Daniela Molinari

URL del sito web: http://www.amolamatematica.it
Mercoledì, 05 Ottobre 2022 22:12

5 ottobre 2022

Verifica di matematica, classe seconda liceo scientifico.
Argomento: relazioni e funzioni.

Durata: 70 minuti.

Lunedì, 26 Settembre 2022 21:14

Dopo Euclide: geometria e balistica

Euclide Megarense philosopho, solo introduttore delle scientie mathematice. Diligentemente rassettato, et alla integrità ridotto, per il degno professore di tal scientie Nicolo Tartalea Brisciano

Il volume è una traduzione dal latino in volgare dell'opera "Elementi" di Euclide, suddivisa in quindici libri, nei quali sono presentati i principi e le nozioni della geometria noti al tempo del matematico greco. Inoltre Tartaglia si dedicò all'insegnamento della geometria euclidea siccome era parte fondamentale nei suoi studi della balistica.
Tartaglia spiega nello spazio dedicato al traduttore perché ha deciso di tradurre l'opera: per permettere agli studenti di usufruire degli studi di Euclide sull'aritmetica e la geometria.
Spiega inoltre la visione di Euclide riguardo a queste ultime due discipline, descritte, in particolar modo la geometria, secondo la visione filosofica di Aristotele e Platone: l'uomo è guidato dal desiderio di sapere che non è altro che intendere per dimostrazione. Per Platone la sapienza non è altro che una cognizione delle cose divine e umane e viene divisa in due parti distinte, cioè speculazione e operazione, ovvero teoria e pratica; mentre Aristotele nella Metafisica afferma che il fine della speculazione, ovvero della pratica speculativa, è la verità, la quale si trova proprio nella matematica e nella geometria che sono del "puro cibo della vita intellettuale". Il geometra è visto come uno che non si cura delle figure, delle forme, delle linee, del materiale, ma si cura soltanto delle figure così come sono, di come l'occhio sensibile vede le figure sensibili, perciò anche le figure viste nella mente sono tanto vere quanto quelle viste dall'occhio.

Opera in mostra: Euclide Megarense philosopho, solo introduttore delle scientie mathematice. Diligentemente rassettato, et alla integrità ridotto, per il degno professore di tal scientie Nicolo Tartalea Brisciano. Secondo le due tradottioni. Con vna ampla espositione dello istesso tradottore di nuono aggiunta...
In Venetia: appresso Curtio Troiano, 1565 (In Venetia : appresso Curtio Troiano, 1566).
Accademia Tadini, Lovere, Biblioteca storica, ATL H.VI.3

 

OPUSCOLI DI GEOMETRIA E BALISTICA di Leonardo Salimbeni

Il volume scelto è un volume sugli studi geometrici e balistici dell'onorevole ingegnere Leonardo Salimbeni. Il volume si apre con la dedica al signor Giovanni Battista da Riva e successivamente si trova l'introduzione al primo opuscolo dove si parla di geometria piana. Alla fine del capitolo, si trova un’appendice a quest’ultimo dove non si parla più solo di teoria ma anche di pratica: sono presenti infatti moltissime formule matematiche per spiegare la geometria. Vengono presentati anche dei problemi di esempio. 
Nella seconda metà del volume si apre il secondo opuscolo, dedicato alla balistica, più in particolare sul getto delle bombe specialmente nei piani inclinati.
Nella prefazione del secondo opuscolo del proprio manoscritto, Salimbeni spiega di come ormai ai suoi tempi “tutte le nazioni di europa” fossero piene di artiglieri e di conseguenza di artiglieria e armi da fuoco. Dice anche di quanto sia fondamentale la matematica per permettere che queste armi venissero usate al meglio: importantissimo è il ruolo della geometria; afferma infatti di voler trovare un nuovo modo per “tirere le armi sopra ai pieni inclinati in un modo più sicuro di quelli usati in precedenza”. 
Bisogna notare infatti che l’opuscolo nel quale parla di basilica presenta precedentemente due opuscoli sulla geometria che servono anche per introdurre l’argomento sull’artiglieria. 
Il rapporto tra la geometria analitica e il moto dei proiettili infatti è strettamente collegato: per esempio, un corpo lanciato da un cannone partendo con una certa velocità iniziale ed un certo angolo percorre una traiettoria parabolica sotto l'azione della sola accelerazione di gravità. ma questo verrà scoperto successivamente a Galileo, quando si capirà che la traiettoria di un proiettile è per l’appunto un moto parabolico.
Come Salimbeni, anche Tartaglia dedicò parte della sua vita allo studio della balistica; dal 1534 infatti si diede all’insegnamento della geometria euclidea, disciplina strettamente collegata alla balistica. Così nel 1537 pubblica il primo volume che parla del moto dei corpi nello spazio: nel volume è presente un volumetto balistico nel quale cerca di fornire indicazioni utili a un migliore uso delle armi da artiglieria, prendendo le mosse da teorie di balistica basate sul principio dell’impetus (moto violento di cosa o persona che si spinge contro un oggetto con tutta la sua forza).
Lo studio riguardava la gittata massima dei proiettili delle bombarde. Tartaglia trovò che la gittata massima si aveva per un angolo di tiro di circa 45°, valore che coincide con i calcoli teorici per una traiettoria nel vuoto. E questo perché, utilizzando proiettili pesanti e piuttosto lenti, la resistenza dell’aria risultava trascurabile. 
Curioso è però il fatto che inizialmente Tartaglia non volesse scrivere un trattato sulla balistica: riteneva infatti che fosse immorale costruire armi che andassero ad uccidere o comunque a ferire delle persone. Forse proprio perché lui stesso era stato ferito da un’arma in giovane età? Nonostante ciò però, quando l’invasione da parte dei Turchi era alle porte, Tartaglia decise di creare il volumetto balistico per migliorare la prestazione delle artiglierie ed evitare l’invasione turca.
Successivamente cercò di pubblicare anche delle tavole di tiro dove voleva classificare ogni arma specificando l’inclinazione e i dati principali per far si che l’arma lavorasse al massimo della potenza e per dare altre informazioni sui lanci e sul moto del proiettile in modo diretto. Purtroppo tartaglia era in anticipo di parecchi anni sullo studio dell'argomento e la sua idea non riscosse il giusto successo.  

Opera in mostra: Opuscoli di geometria e balistica di Leonardo Salimbeni capitano d'ingegneri e professore di matematica nelle scuole militari di Verona. 
In Verona: per gli eredi di Marco Moroni, 1780.
Accademia Tadini, Lovere, Biblioteca storica, ATL H.II.1

Inoltre, risponde alla domanda:

“Quale e quante siano le scientie, overo discipline Mathematice. Le scientie, overo discipline dette Mathematice, secondo il volgo sono molte, cioè Arithmetica, Geometria, Musica, Astronomia, Astrologia, Cosmographia, Geographia, Corographia, Perspettiva, Specularia, la Scientia de pesi, la Architettura e molte altre. Ma alcuni Sapienti, prendono solamente le quattro prime, cioè Arithmetica, Geometria, Musica e Astronomia: e tutte le altre dicono esser subalternate, cioè dependente dalle dette quattro: alcuni altri moderni (per alcune sue ragioni) vogliono che le dette Mathematice siano cinque, però che alle dette quattro aggiungono la Prospettiva.”

La descrizione può essere confrontata con l’Allegoria delle scienze matematiche pubblicata nel volume di Tartaglia (vetrina 2).

 

Lunedì, 26 Settembre 2022 21:12

La formula segreta

LA DISFIDA

Disfida Matematica (secondo l’enciclopedia Treccani): gara pubblica, in voga nel sec. 16°, nella quale un matematico sfidava un altro matematico a risolvere un dato problema, mediante un apposito cartello d’invito (cartello di matematica disfida).

Nel 1526 muore Scipione Dal Ferro, che aveva scoperto una formula risolutiva per le equazioni di terzo grado. La formula non era stata resa pubblica, ma era nota agli allievi di Dal Ferro. Tra essi, Antonio Maria del Fiore, detto Fior, che decise di appropriarsene.
Tartaglia, nel 1535, trovò una formula risolutiva per le equazioni di terzo grado che permetteva di risolvere più casi rispetto alla formula di Fior. Quest’ultimo sfidò Tartaglia in una disfida, che fu vinta da Nicolò Tartaglia.
Il matematico iniziò a guadagnare fama, ma scelse di mantenere segreta la formula, per poterla comunicare lui stesso in una propria opera. Tuttavia, un intellettuale del tempo, Gerolamo Cardano, lo convinse a rivelargli la formula risolutiva, con la promessa di mantenerla segreta. Cardano però rivelò la formula al suo miglior allievo, Ludovico Ferrari, che grazie ad essa trovò il procedimento per svolgere le equazioni di quarto grado.
Cardano voleva pubblicare la scoperta di Ferrari e Tartaglia, ma era vincolato dal patto con quest’ultimo. Tuttavia, Cardano venne a sapere che la formula risolutiva di Tartaglia era già stata scoperta da Scipione Dal Ferro, perciò pubblicarla non sarebbe stato un tradimento nei confronti dell’amico.
Nel 1545 venne così pubblicato l’Ars Magna di Cardano, testo che conteneva le formule risolutive relative alle equazioni di terzo e quarto grado, compresa la formula scoperta da Tartaglia.
Egli, infuriato e sentendosi tradito dall’amico, nel 1546 pubblicò un libro, Quesiti et inventioni diverse, in cui esponeva la propria versione di tutta la vicenda.
Cardano non replicò all’attacco subìto, lasciando che a farlo per lui fosse l’allievo Ferrari. Il 10 febbraio 1547, Ferrari lanciò a Tartaglia un pubblico cartello di disfida matematica, caratterizzato da toni sprezzanti e denigratori.
La resa dei conti arrivò il 10 agosto 1548, giorno in cui Tartaglia e Ferrari incrociarono le armi matematiche a Milano, nella chiesa di Santa Maria del Giardino.
Spinto dal supporto della sua “gran comettiva”, Ferrari appariva in grado di esporre le proprie argomentazioni con rapidità, sicurezza e piena padronanza di metodi e formule, dimostrando di possedere una preparazione matematica ben superiore alle attese di Tartaglia. Il quale, a suo dire innervosito e deconcentrato dal pubblico, non sembrava riuscire a tenere testa al rivale. E dopo solo un giorno di discussioni, abbandonò la contesa.

Due testi nella biblioteca del conte Tadini mostrano l’interesse per le scienze matematiche nel Settecento nelle università e nelle accademie militari.

Leonardo Salimbeni
Ricerche sull'equazioni di terzo grado
Verona: Dionigi Ramanzini, 1782
Accademia Tadini, Lovere, Biblioteca storica.

Leonardo Salimbeni approfondisce gli studi presso il Collegio Militare di Verona. In quella sede, ottiene ottimi risultati “per prontezza, acume e penetrazione nell’apprendere le scienze matematiche e le discipline militari”. I risultati dei suoi studi saranno esposti in numerose pubblicazioni.
Il volume esposto, un opuscolo di ricerche relative alle equazioni di terzo grado suddiviso in due capitoli; nella vetrina successiva (► vetrina 4) è presentato un trattato di balistica.

Giuseppe Cassella
Saggio d'un tentativo per risolvere l'equazioni di tutt'i gradi.
Napoli: Pietro Perger, 1788.
Accademia Tadini, Lovere, Biblioteca storica. 

Giuseppe Cassella, astronomo e matematico, è stato professore di Matematica all’Università di Padova, poi di Astronomia nel Real Collegio della Marina e di Meccanica nel Real Collegio di Artiglieria e nella Regia Università degli Studi a Napoli.

 

LEONARDO SALIMBENI

Leonardo Salimbeni nacque a Spalato nel 1752, figlio di un militare veneziano di alto rango, Giovanni Salimbeni, e fratello maggiore di Sebastiano Salimbeni.
Nel 1764 si iscrisse al collegio militare di Verona.
Per affari militari viaggiò a Zante e a Zara, mentre per il suo talento scientifico, il direttore del collegio Antonio Moser de Filseck lo condusse in un viaggio in Dalmazia e Albania.
Nel 1794 divenne direttore del collegio come suo padre prima di lui.
Nel 1783 sposa Alfonsa Moronati, sorella di Libera, moglie del conte Luigi Tadini.
Nel 1791 ampliò la dogana del commercio di Verona e divenne un membro della Società Italiana, detta dei Quaranta, nello stesso periodo in cui ne fu un socio Alessandro Volta.
Conobbe Isabella Teotochi, nata Albizzi, nel 1778 e fece parte del suo salotto culturale al quale partecipavano personaggi del calibro di Foscolo, Byron e Canova. Viaggiò con Isabella a Roma dove ebbe l’opportunità di visitare lo studio di Canova e di conoscere Vincenzo Monti.
Il 27 maggio 1796 incontrò a Brescia Napoleone, che descrisse in una lettera-resoconto.
A Verona Bonaparte propose a Salimbeni di dirigere una scuola del genio militare e dell'artiglieria. Il comandante francese lo convinse a trasferirsi a Milano, sede della Repubblica Cisalpina.
Nominato direttore della scuola militare ebbe come allievi suo figlio Giovanni e Giovanni Foscolo, fratello del poeta.
Dopo la discesa delle truppe austro-russe in Italia nel 1800, i beni di Leonardo Salimbeni vennero confiscati.
Sebbene nel 1801 Salimbeni, insieme al figlio Giovanni, avesse parteggiato per il ritorno dei Francesi in Italia, rifiutò un incarico alla scuola militare di Francia e all'Università di Modena.
Dopo l’ordine di Napoleone di deporre ed eventualmente fucilare il fratello Sebastiano, Leonardo si rifugiò a Nonantola.
Il fratello Sebastiano morì nel 1807, il padre Giovanni l’anno successivo e il figlio Giovanni nel 1811.
Mentre Salimbeni, lieto della caduta di Napoleone sistemava la sua proprietà a Nonantola, il suo secondogenito Sebastiano progettava il palazzo delll’Accademia Tadini a Lovere per lo zio: il conte Luigi Tadini.
Leonardo Salimbeni morì a Modena nel 1823.

RICERCHE SULL’EQUAZIONI DI TERZO GRADO DI LEONARDO SALIMBENI

Il volume di Leonardo Salimbeni, in seguito al frontespizio, presenta una dedica: “A sua eccellenza il signor ANTONIO ZEN Savio di terra ferma alla scrittura.” Salimbeni dona l’operetta ad Antonio Zen, premettendo che il fine del dono non sia la ricerca di Approvazione, poiché non reputa la propria opera importante abbastanza da richiederla; né di Patrocinio, poiché già ne gode; né di Premj, poiché reputa la propria anima abbastanza elevata da non necessitare di una prova fisica delle proprie capacità; né di Difesa, poiché riconosce che ogni autore debba essere in grado di custodire la propria opera senza aiuto esterno. Salimbeni continua il discorso affermando, perciò, che resta dunque che per solo contrassegno di Gratitudine questo tenue dono vi dedichi e consacri. In seguito, ringrazia l’Eccellentissimo Signore per il sostegno ricevuto e giustifica la scelta di donare questo opuscolo con la passione dimostrata da Antonio Zen per gli Studj di Matematica. Salimbeni conclude con lodi ad Antonio Zen.

Seguono dunque la prefazione e gli effettivi capitoli dell’opera

  • Capitolo primo: Che tratta di quell’equazioni cubiche che hanno tutte e tre le radici reali sotto forma reale, disuguali e irrazionali
  • Capitolo Secondo: Dove si espone un metodo pratico per la risoluzione dell’equazioni numeriche di terzo grado, che hanno tutt’e tre le radici reali.

Il volume si conclude con la “tavola dell’operazione trigonometrica”.

 

Opera in mostra: Opuscoli di geometria e balistica di Leonardo Salimbeni capitano d'ingegneri e professore di matematica nelle scuole militari di Verona. 
In Verona : per gli eredi di Marco Moroni, 1780. 
Accademia Tadini, Lovere, Biblioteca storica, ATL H.II.1

 

OPUSCOLI DI VARIO ARGOMENTO DI GIUSEPPE CASSELLA 

Il volume è un unico opuscolo, chiamato anche Saggio d'un tentativo per risolvere l'equazioni di tutti i gradi. In questo opuscolo Cassella si dedica alla spiegazione delle sue ricerche, studi e calcoli per trovare un nuovo modo, una nuova formula risolutiva che vada bene per la risoluzione di equazioni di tutti i gradi superiori al terzo, siccome la formula per queste ultime era già stata scoperta nel '500 da Tartaglia.

Opera in mostra: Opuscoli di vario argomento di Giuseppe Cassella regio astronomo della Marina dell'Accademia delle scienze, lettere ed arti di Padova. Opuscolo 1. saggio d'un tentativo per risolvere l'equazioni di tutt'i gradi.
Napoli: nella stamperiadi Pietro Perger, 1788. [due copie]
Accademia Tadini, Lovere, Biblioteca storica, H.II.2 

Lunedì, 26 Settembre 2022 21:04

La matematica tra poesia e immagine

Nel 1534 Gerolamo Cardano, che stava per pubblicare un trattato di Algebra, invita Niccolò Tartaglia a Milano e gli chiede la formula risolutiva delle equazioni di terzo grado.
Tartaglia, che intendeva pubblicarla personalmente dopo aver completato la traduzione del testo di Euclide, trasmette la formula a Cardano nascondendola in un componimento poetico in terzine di endecasillabi, obbligando il collega ad un complicato lavoro per decodificarla.
L’uso di una composizione in rima era comune al tempo, e serviva anche per facilitare la memorizzazione dei passaggi più difficili della formula.

Analisi metrica: Tartaglia scrive la poesia in endecasillabi di terzine incatenate.

 

Analisi matematica: Tartaglia scrive in poesia, ma il linguaggio della matematica ora è diverso:

 

Nella vetrina sono esposte anche due immagini allegoriche: 

La PRIMA tratta da un testo di Tartaglia (► vetrina 1) rappresenta la concezione della matematica elaborata da Tartaglia sulla base delle sue riflessioni su Euclide (► vetrina 4)

Nell'incipit del volume esposto nella sezione 1, è rappresentata un'allegoria dei saperi dei quali Tartaglia parla anche nell'incipit della sua traduzione di Euclide.
Viene rappresentato il mondo della conoscenza, definito da due recinti circolari non concentrici a cui si accede attraverso porte che sono sorvegliate da guardiani.
Come precisa lo stesso Tartaglia nella sua edizione di Euclide (esposto nella sezione 4), il primo recinto racchiude le scienze matematiche, l’ingresso è quindi sorvegliato da Euclide stesso che è la chiave di accesso.
All’interno del recinto si trovano le allegorie e le personificazioni delle scienze matematiche: ci sono delle discipline fondamentali che vengono rappresentate per prime (geometria, aritmetica, musica e astronomia) e tutti questi saperi dipendono dalla filosofia che sta in trono nel recinto seguente.
Nicolò Tartaglia viene raffigurato con le scienze ed assiste alla prova di balistica; alle sue spalle ci sono tutti i saperi che dipendono dalla matematica.
Il secondo recinto, quello più elevato, è quello della filosofia, origine di tutte le scienze umane, che viene sorvegliato dell'autorità di Platone ed Aristotele.
La raffigurazione è estremamente ricca di particolari e viene attribuita a Giovanni Antonio Rusconi, un giovane ingegnere, architetto e disegnatore veneziano, allievo di Tartaglia.

La SECONDA, tratta da una delle edizioni dell’Iconologia di Cesare Ripa, presenta, un’immagine allegorica della scienza matematica con una serie di oggetti che servono per indicare i suoi scopi e le sue finalità.

Donna di mezza età, vestita di velo bianco e trasparente, con l’ali alla testa, le trecce siano distese giù per le spalle, con un compasso nella destra mano, mostri di misurare una tavola segnata da alcune figure e numeri, e sostentata da un fanciullo al quale ella mostri di parlare insegnandoli, con l’altra mano terrà una palla grande figurata per la terra con il disegno dell’hore, e circoli celesti, e nel lembo della veste sia un fregio intessuto di figure Mathematiche, siano i piedi ignudi sopra una base.

Opera in mostra: Noua iconologia di Cesare Ripa perugino caualier de ss. Mauritio, & Lazzaro. Nella quale si descriuono diuerse imagini di virtu, vitij, affetti, passioni humane, arti, discipline, humori, elementi, corpi celesti, prouincie d'Italia, fiumi, tutte le parti del mondo, ed altre infinite materie. Opera utile ad oratori, predicatori, poeti, pittori, scultori, disegnatori, e ad'ogni studioso per inuentar concetti, emblemi, ed imprese ... ampliata vltimamente dallo stesso auttore di trecento imagini, e arricchita di molti discorsi pieni di varia eruditione; con nuoui intagli, & con molti indici copiosi...
In Padoua : per Pietro Paolo Tozzi : nella stampa del Pasquati, 1618.
Accademia Tadini, Lovere, Biblioteca storica, ATL G.IV.36

 

Lunedì, 26 Settembre 2022 21:01

Niccolò Tartaglia: una vita di sfide

Niccolò Fontana, noto come Niccolò Tartaglia, nacque a Brescia nel 1499, rimase orfano di padre all'età di 6 anni. Il 19 febbraio 1512 l'esercito francese, guidato da Gaston de Foix, durante il sacco di Brescia aggredì un gruppo di donne e bambini rifugiatisi nel Duomo della città, Niccolò subì ferite profonde alla mascella e al palato e sua madre bagnò le sue ferite con acqua, non potendosi permettere alcun medicinale. Egli guarì ma, a causa delle ferite riportate che il matematico nascondeva con la folta barba, divenne balbuziente e perciò gli venne assegnato il soprannome di 'tartaglia', che accettò, e con il quale firmò tutte le sue opere. Malgrado non avesse frequentato studi regolari, il suo talento per la matematica e il suo genio gli permisero di ottenere grandi successi accademici.
Si trasferì a Verona nel 1521, e successivamente  a Venezia, per insegnare matematica. Acquisì la sua notorietà a seguito della disfida proposta dal matematico Antonio Maria Del Fiore, discepolo di Scipione dal Ferro, che vent'anni prima aveva risolto le equazioni cubiche senza però svelarne il metodo risolutivo. Tartaglia risolse tutti i quesiti di Del Fiore in un paio d'ore, mentre l'avversario non ne risolse nessuno. 
Era il 1534: due matematici milanesi, Gerolamo Cardano e l'allievo Ludovico Ferrari, chiesero a Nicolò di pubblicare in un libro le sue scoperte, ma Tartaglia rifiutò. Niccolò rivelò in seguito la formula a Cardano, con la promessa di non utilizzarla. 
Tuttavia, Cardano venne a conoscenza della formula risolutiva scoperta precedentemente da Scipione Dal Ferro, e reputandola identica a quella di Tartaglia si ritenne sciolto dal giuramento. 
Pubblicò la formula risolutiva dell'equazione di terzo grado, nota ancora oggi con il nome di Cardano-Tartaglia. 
Niccolò Tartaglia, che nel frattempo aveva per primo tradotto gli Elementi di Euclide in italiano e trattato in più opere di balistica, geometria, algebra, artiglieria, fortificazioni e strategia, perse nel 1548 una disfida contro Ludovico Ferrari intento a difendere il suo mentore. Tornato a Venezia nel 1551 ideò un sistema che con l'ausilio di cordami permetteva di recuperare navi affondate tuttavia ebbe scarso successo. Nel libro del 1556, General trattato di numeri et misure, introduce il triangolo di Tartaglia, che riteneva una sua scoperta ma che in realtà era già noto agli arabi e ai cinesi. Morì a Venezia il 13 dicembre 1557.

Opera in mostra: Opere del famosissimo Nicolo Tartaglia cioé Quesiti, Trauagliata inuentione, Noua scientia, Ragionamenti sopra Archimede. Nelle quali copiosamente si spiega. L'arte di guerreggiare, cosi in mare, come in terra, ... - In Venetia : al segno del Lione, 1606.
Accademia Tadini, Lovere, Biblioteca storica, ATL G.II.15

 

Lunedì, 26 Settembre 2022 20:39

Tartaglia... una mostra

La biblioteca dell'Accademia Tadini ospita una sezione dedicata ai libri di matematica. Tra questi, le professoresse Carolina Bergamini e Daniela Molinari hanno individuato un piccolo nucleo di volumi che consente di ricostruire la storia del matematico bresciano Niccolò Fontana, detto Tartaglia (Brescia, 1499 circa - Venezia, 13 dicembre 1557). Su questo tema hanno lavorato, nell'ambito di un Percorso per le Competenze Trasversali e l'Orientamento (PCTO), quattro studienti del quarto anno del Liceo Classico - Samuele Balduzzi, Camilla Coronini, Dariia Kravchenko, Elisa Saporiti - che hanno curato questa esposizione, con la supervisione del dott. Marco Albertario, direttore dell'Accademia. 

Niccolò Tartaglia: una vita di sfide

La matematica tra poesia e immagine

La formula segreta

Dopo Euclide: geometria e balistica
 

Domenica, 18 Settembre 2022 00:28

195 - 17 settembre 2022

Matematica (e fisica) a scuola
Nonostante abbia ormai alle spalle vent’anni di esperienza, mi capita di perdere ancora parecchio tempo a preparare le mie lezioni. Magari si tratta di argomenti semplici da un punto di vista contenutistico, visto che quest’anno parliamo di biennio del liceo scientifico, ma, alla ricerca di inizi pieni di effetti speciali, a volte mi perdo sul web. Stavolta la lezione in questione era quella introduttiva di cinematica per la seconda e volevo una mappa della fisica, per fare in modo che capissero in quale punto del percorso si trovano. È così che mi sono imbattuta nelle mappe di Dominic Walliman: fisico, premiato scrittore scientifico, con un dottorato in fisica dei dispositivi quantistici all’Università di Birmingham, al momento lavora alla D-Wave Systems Inc., un’azienda di informatica quantistica di Vancouver. La sua recente TED-talk dedicata alla fisica quantistica per bambini di sette anni mette in luce come sia importante capire la scienza attorno a noi e descrive la fisica quantistica non solo con grande chiarezza, ma soprattutto affascinando l’uditorio. Comincia con il dualismo onda-particella, prosegue con l’effetto tunnel, di vitale importanza per la luce solare, e poi descrive il principio di sovrapposizione, che permette le indagini diagnostiche con la risonanza magnetica. Ciò di cui parla è affascinante anche se controintuitivo, ed è utilissimo dal punto di vista pratico. La fisica quantistica, considerata la branca più incomprensibile, è ricca di aspetti difficili da immaginare, ma che è possibile descrivere grazie alla matematica: è così che la fisica trova nella matematica i propri occhi. Nella seconda parte della talk, Walliman ci indica i quattro principi ai quali potremmo ispirarci per spiegare la fisica nel contesto scolastico (i quattro principi da lui enunciati riguardano la divulgazione). Dopo essersi accertati che l’uditorio sia in grado di comprendere ciò di cui stiamo parlando (a scuola dovrebbe essere garantito dai prerequisiti), dobbiamo ricordarci di non addentrarci troppo nei particolari e di puntare sulla chiarezza invece che sull’accuratezza (in effetti certi particolari potrebbero essere reperiti in fase di studio sui libri di testo), mentre è vitale sottolineare perché riteniamo importante ciò che stiamo spiegando.

Matematica inaspettata
Si creano, a volte, strane associazioni di idee: stavo leggendo un articolo di Lucia Brandoli, riportato su The Vision – una testata dagli interessi variegati, che ha come obiettivo di offrire una “visione di insieme” sugli eventi e sulla realtà – che sottolinea come in Italia il mondo della cultura umanistica continui a snobbare la matematica, mentre chi non ne ha che una conoscenza sommaria prende le distanze da questa disciplina ritenuta ostica. Studi recenti hanno messo in evidenza come la matematica sia percepita in maniera completamente diversa rispetto alle altre discipline e quanto sia decisivo il ruolo degli insegnanti nella motivazione allo studio. Non a caso Lucia Brandoli punta l’attenzione sulla matofobia, ovvero la paura della matematica. L’articolo si conclude riconoscendo che «nella vita di tutti i giorni oggi più che mai avere una solida base matematica è fondamentale, per fare i conti, per non essere fregati, per poter valutare criticamente varie offerte» e l’elenco continua ancora. In effetti, le applicazioni della matematica sono le più disparate, come ci ricorda Stefano Pisani, che dalle pagine di MaddMaths! ci racconta come la topologia ci aiuti a prevedere le mutazioni del SAR-Cov-2: questa parte così originale della matematica non poteva che avere un’applicazione inaspettata! Ma non è c’è solo questo: se chiudiamo il cerchio, tornando alla sottolineatura di Lucia Brandoli sull’importanza del docente nell’apprendimento della matematica, non posso che ricordare il laboratorio realizzato da Sofia Sabatti sulla topologia, e presentato nel suo blog Matematomi. Sofia, insegnante presso l’Istituto Comprensivo Colombo di Venezia e autrice di Diario di bordo, comincia il suo post con un richiamo importante: «sono convinta che insegnare ciò che ci piace sia (certamente un privilegio, ma anche) un dovere. Perché solo quando insegniamo ciò che ci appassiona possiamo essere davvero credibili.» Forse il segreto per combattere la matofobia è questo: lasciarci guidare dalla passione!

Matematica e umorismo
Tra le pagine che leggo sulla mia bacheca su Facebook c’è quella del prof. Vincenzo Giordano, professore presso il Politecnico di Bari e presso il Liceo Scientifico Statale “E. Fermi”, che, a fine agosto, ha condiviso un simpatico post:

Leggi di Murphy della Matematica
1) Nel risolvere un problema, aiuta sempre conoscerne la soluzione.
2) Un’espressione può essere resa uguale a qualsiasi altra espressione, se la si manipola a sufficienza.
3) Gli appunti che potete comprendere perfettamente in classe, si trasformano in geroglifici a casa.
4) I libri di testo sono scritti per coloro che conoscono già l’argomento.
5) Ogni concetto semplice può essere espresso in termini incomprensibili.
6) Le risposte che servono non sono al fondo del libro.
7) I problemi (o gli esercizi) che sapete risolvere non escono mai all’esame.
8) Il problema (o esercizio) che sicuramente non uscirà all’esame, uscirà all’esame.
9) La risposta al problema che non siete riusciti a risolvere all’esame sarà evidente in fase di correzione.
10) Ogni problema è più duro di quanto sembri e richiede più tempo di quanto pensiate. E se vi pare semplice, state seguendo la strada sbagliata.

La dimostrazione che le stesse leggi valgono anche alla scuola superiore è così semplice che è lasciata al lettore…
Da una risata all’altra: ecco la pagina del sito math.it dedicata all’umorismo: un buon modo per vincere la paura della matematica potrebbe avvalersi dell’arte della sdrammatizzazione!

Matematica per il futuro
Probabilmente domenica 18 settembre, Davide e Riccardo del Math-segnale pubblicheranno un video sul proprio canale per parlare di uno dei giochi d’azzardo più celebri nel nostro Paese, il Superenalotto. «Parleremo del concetto di valore atteso e del perché “non giocare” sia la risposta più sensata alla domanda “come faccio a vincere col superenalotto”», come hanno scritto in un post su Facebook. Se ancora non l’avete fatto, iscrivetevi al loro canale e godetevi il video che hanno preparato: ve lo consiglio a scatola chiusa!*

Matematica che passione!
1) Bellissima chiacchierata tra Raffaella Mulas e Lisa Sauermann, docente di matematica al Massachusetts Institute of Technology dall’età di 28 anni, nota per i suoi risultati in combinatoria estrema e probabilistica, ma anche per i suoi successi alle Olimpiadi internazionali della matematica, nelle quali ha ottenuto quattro medaglie d’oro e una d’argento. Questo articolo per MaddMaths! coniuga leggerezza e profondità, nel tipico stile di Raffaella Mulas: si parla dei giochi matematici, di cosa sia la “vera matematica” che si studia all’università, di gender gap, ma la parte che mi è piaciuta di più riguarda la crisi: «Ora penso che molti dottorandi o anche matematici più senior attraversino fasi in cui le cose non funzionano, ma ogni volta in cui sei in una fase del genere, pensi sempre che tutte le altre persone intorno a te abbiano successo. In particolare, su arXiv vedi solo i successi, e non c’è un arXiv di cose che le persone hanno provato a fare e che non hanno funzionato.» Forse bisognerebbe pensare a un ign-arXiv che, come gli igNobel, dia risalto alle idee “fallimentari”: magari anche quelle matematiche potrebbero aprire la strada ad applicazioni inaspettate.
2) Il Festival di BergamoScienza è ormai alle porte: tra meno di due settimane, ci ritroveremo a Bergamo per la Scuola in Piazza, in una festa all’insegna della scienza e del divertimento. I laboratori che stiamo progettando si svolgeranno dal 3 al 16 ottobre, in parte presso la Fondazione Accademia di Belle Arti Tadini onlus di Lovere, in parte presso il nostro Istituto. Questo sodalizio è nato grazie all’iniziativa del dott. Marco Albertario, direttore dell’Accademia, che il 2 febbraio scorso ha aperto un gruppo WhatsApp e ha avviato la discussione con la foto del frontespizio di “Quesiti et inventioni diverse de Nicolò Tartaglia”, seguita da un messaggio: «Magari per BergamoScienza ricavate qualche spunto». I nostri laboratori sono nati così: in una primaverile giornata di sole, mentre sfogliavamo con soggezione questi bellissimi libri, hanno cominciato a germogliare alcune idee. Queste sono state superate dalle proposte dei nostri animatori e, in una corsa contro il tempo per completare i materiali e le simulazioni, si stanno arricchendo di contenuti ed entusiasmo. Il titolo dell’iniziativa è Tarta-scienza, a richiamare BergamoScienza e il nome di Tartaglia, ricreando il sodalizio tra Bergamo (il Festival e Lovere) e Brescia (la città di Tartaglia) per anticipare il 2023, quando Bergamo e Brescia saranno Capitale Italiana della Cultura.

Matematica da vedere…
La youtuber e divulgatrice Ilaria Fanelli (IlariaF Math) è ora disponibile anche in versione “sito”: sul nuovo portale, troviamo un elenco dei video da lei realizzati, ottimi per scoprire «il lato curioso e affascinante della matematica» anche se non si è esperti in materia, «utili da utilizzare nelle proprie classi» e fonte di ispirazione, visto che ce ne sono alcuni in cui Ilaria racconta le proprie esperienze didattiche.

Buona matematica! Ci sentiamo tra TRE settimane!

Daniela

*Il video ora è online: vale la pena investirci un po' di tempo e seguirlo con attenzione! E' spiegato chiaramente perché il modo per vincere al Superenalotto sia... non giocare!

Sabato, 17 Settembre 2022 16:23

BergamoScienza 22

 
Dal 1° al 16 ottobre avrà luogo la XX Edizione del Festival di BergamoScienza e il nostro Istituto parteciperà, per la SETTIMA volta, con tre laboratori e una conferenza
Giovedì, 01 Settembre 2022 17:15

30 agosto 2022

Verifica di fisica, classe prima liceo scientifico.
Argomento: prova di recupero del debito.

Durata: 120 minuti.

La prova non è stata assegnata integralmente: agli alunni coinvolti sono stati assegnati alcuni degli esercizi (non tutti), a seconda degli argomenti che dovevano recuperare.

Giovedì, 01 Settembre 2022 17:13

29 agosto 2022

Verifica di matematica, classe prima liceo scientifico.
Argomento: prova di recupero del debito.

Durata: 120 minuti.

La prova non è stata assegnata integralmente: agli alunni coinvolti sono stati assegnati alcuni degli esercizi (non tutti), a seconda degli argomenti che dovevano recuperare.

Pagina 1 di 108

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy