Visualizza articoli per tag: storia

Venerdì, 02 Agosto 2013 15:45

Energia, forza e materia

TRAMA:

Nel diciottesimo secolo, la fisica, che riguardava solo i fenomeni meccanici, era analizzata solo dal punto di vista matematico. Più avanti, il calore e l’elettricità vennero spiegati con l’esistenza di fluidi imponderabili, ma si trattava di speculazioni qualitative, separate dalla scienza esatta ovvero dalla meccanica, nonostante i diversi tentativi di trattazioni matematiche. Oersted (1820) e Faraday (1831) riuscirono a collegare, con i loro esperimenti, le forze elettriche e quelle magnetiche; Joule stabilì l’equivalenza tra calore e lavoro meccanico e nel 1847 Helmholtz trattò i fenomeni di meccanica, calore, luce, elettricità e magnetismo come differenti manifestazioni dell’energia. Il modo in cui i problemi fisici della luce, del calore e dell’elettricità venivano trattati era tale da consentirne un’analisi matematica e ciò favorì molto l’unificazione della fisica. Ebbero particolare importanza gli esperimenti di Joule: mentre i fisici del diciottesimo secolo avevano considerato i processi meccanici e quelli non meccanici come processi relativi a differenti sistemi fisici, la dimostrazione dell’equivalenza tra lavoro meccanico e calore fatta da Joule negli anni Quaranta dell’Ottocento consentì, insieme alla legge della conservazione dell’energia, l’unificazione dei processi termici e meccanici. E così negli anni Cinquanta e Sessanta Thomson e W.J. Macquorn Rankine elaborarono un nuovo modello della teoria fisica in cui il concetto fondamentale era quello di energia, tentando di rendere più chiara la base matematica e fisica del principio di conservazione dell’energia.

Il concetto di campo emerse intorno al 1850, nella fisica britannica, quando Thomson e Maxwell formularono le teorie dell’elettricità e del magnetismo. La concezione meccanicistica della natura ricevette un ulteriore supporto negli anni Cinquanta e Sessanta con lo sviluppo della teoria cinetica dei gas elaborata da Clausius e Maxwell, nella quale il moto delle particelle era descritto come fenomeno meccanico. I dubbi sorti dopo questa spiegazione indussero Maxwell a introdurre il paradosso del «demone», per dimostrare che le interpretazioni molecolari dovevano basarsi su un’analisi statistica del moto di un immenso numero di molecole.

Con l’enunciazione dell’equivalenza tra massa ed energia e l’abbandono di spazio e tempo assoluti, la teoria della relatività di Einstein segna una «rivoluzione» nella storia della fisica: per quanto l’accento che si pone generalmente sulla discontinuità tra fisica classica e moderna sia appropriato quando serve a distinguere le assunzioni filosofiche della fisica sette-ottocentesca dalle dottrine relativistiche e indeterministiche della fisica del nostro secolo, e a distinguere una fisica prima e una fisica dopo lo sviluppo della meccanica quantistica negli anni Venti, questa frattura è esagerata e trascura, in un modo che risulta alla fine fuorviante, la continuità di idee che pur esiste tra il periodo classico e il periodo moderno.

 

COMMENTO:

Una storia della fisica approfondita ed interessante, che può essere affrontata con le conoscenze che si sono acquisite con la scuola superiore. Il linguaggio non rende la lettura sempre agevole, ma con un po’ di concentrazione ed attenzione si può capire ogni cosa.

Pubblicato in Libri
Etichettato sotto
Venerdì, 02 Agosto 2013 15:43

Le curve celebri

TRAMA:

A partire dalla matematica dell’antichità, essenzialmente greca, Cresci tratteggia la storia della matematica attraverso i secoli, seguendo il percorso con brevi descrizioni delle curve piane. Non ci sono trattazioni matematiche o dimostrazioni: ci siamo sforzati di legare ogni curva che viene presentata nel testo al suo ideatore e di quest’ultimo tratteggiare la personalità: le biografie dei matematici sono spesso ricche di episodi, di avvenimenti, di aneddoti curiosi, e la parte matematica delle curve non può prescindere dalle circostanze della loro creazione.

Grazie ai tentativi dei greci di ottenere le soluzioni dei tre grandi problemi dell’antichità – la quadratura del cerchio, la duplicazione del cubo e la trisezione dell’angolo – si ottennero altre curve: le lunule di Ippocrate, la trisettrice di Ippia, la quadratrice di Dinostrato.

Procedendo nella storia, incontriamo Archimede: al suo nome sono legate la spirale, una curva piana, tracciata da un punto che si sposta uniformemente lungo una semiretta, mentre questa a sua volta ruota uniformemente attorno al suo estremo e la circonferenza, visto che il genio dell’antichità raggiunse una buona approssimazione del p, inventando un procedimento iterativo.

Nel XVII secolo si celebra l’inizio della geometria analitica: René Descartes operò una vera rivoluzione, identificando una relazione algebrica, e cioè un insieme di simboli formali, con una curva, o meglio con un luogo geometrico, e cioè con l’insieme di tutti i punti che soddisfano ad una data proprietà geometrica. L’utilizzo delle coordinate non era una novità, perché già Apollonio aveva utilizzato un sistema analogo. Le coniche erano già comparse secoli prima: Menecmo le definì e utilizzò per primo, ricavando la parabola, l’ellisse e l’iperbole dall’intersezione di coni circolari retti (rispettivamente con angolo al vertice retto, acuto e ottuso) e piani perpendicolari alla generatrice del cono. Euclide scrisse quattro libri sulle sezioni coniche, probabilmente andati perduti perché superati dall’opera di Apollonio, Le coniche, trattato nel quale dà alle curve il nome con cui le conosciamo anche oggi ed effettua una generalizzazione, ottenendo le curve da uno stesso cono e variando l’inclinazione del piano di sezione. Le sue sono innovazioni coraggiose e profonde.

Altra curva degna di nota è la cicloide, “la bella Elena” della geometria, che non è altro che il percorso che fa nell’aria il punto di una ruota, quando essa rotola nel suo movimento normale, dal momento in cui il punto comincia a sollevarsi da terra, fino al momento in cui la rotazione continua della ruota l’abbia ricondotto a terra, dopo un giro completo. Se la curva fissa non è una retta ma una circonferenza, la cicloide diventa epicicloide se la circonferenza che rotola è all’esterno, ipocicloide se rotola all’interno. I moti epicicloidali furono usati da Tolomeo per descrivere il movimento di alcuni pianeti.

Tra le curve più famose citate nel libro: la concoide di Nicomede, la cissoide di Diocle, la lumaca di Pascal (padre), la lemniscata di Bernoulli, la spirale logaritmica, la catenaria, la cardioide, la nefroide, la strofoide, la clotoide – studiata inizialmente da Eulero –, la versiera di Gaetana Agnesi – nota in inglese come witch of Agnesi –, la funzione di Gauss, la funzione logistica di Verhulst – per lo studio della crescita demografica di una popolazione –, la curva di Peano, la polvere di Cantor, la curva a fiocco di neve, il setaccio apolloniano e i frattali di Mandelbrot.

Le appendici che concludono il testo riprendono tre argomenti oggetto di presentazione nel testo: la biblioteca di Alessandria, l’invenzione della Pascaline e la storia di Lady Lovelace e Charles Babbage, che precorsero i tempi concependo l’Analytical Engine – il predecessore dell’odierno pc – già nel XIX secolo.

 

COMMENTO:

Visto l’elevato numero di argomenti, curve, aneddoti, non si può che trattare di un “assaggio” di storia della matematica, da sottoporre a ulteriori approfondimenti. Semplice e scorrevole, la sua lettura è consigliata a tutti.

Pubblicato in Libri
Venerdì, 02 Agosto 2013 15:42

La formula segreta

TRAMA:

Nella notte tra il 18 e il 19 febbraio del 1512, durante il sacco di Brescia ad opera dei soldati francesi, Niccolò Tartaglia cercò riparo dentro il Duomo, ma i francesi assalirono i rifugiati e uno di essi gli inferse cinque ferite in volto. Niccolò guarì nel giro di qualche mese, grazie alle cure della madre, ma le ferite alla bocca gli causarono la balbuzie: i coetanei lo prendevano in giro per questo suo difetto chiamandolo “tartaglia” ed egli adottò questo nomignolo come cognome.

Nato a Brescia presumibilmente nel 1499 da una famiglia molto povera, Niccolò Tartaglia lavorò autonomamente alla propria formazione scientifica, studiando le opere di Euclide, Archimede e Apollonio. Tra il 1516 e il 1518 si trasferì a Verona, dove rimase fino al 1534; qui acquisì notorietà e rispetto, con il ruolo di maestro d’abaco. La fama raggiunta da Tartaglia è testimoniata dai quesiti da lui posti a numerosi interlocutori. A quei tempierano di gran voga in Italia le disfide tra matematici, di rango universitario e non: veri e propri duelli scientifici il cui svolgimento ricalcava i canoni dei tornei cavallereschi. Uno studioso inviava a un secondo alcuni problemi, che rappresentavano il guanto di sfida di queste particolari tenzoni, e lo sfidato doveva cercare di risolverli entro un termine prestabilito, proponendo a sua volta all’avversario ulteriori quesiti. La consuetudine voleva poi che ogni duello dall’esito contrastato culminasse in un pubblico dibattito, nel corso del quale i contendenti erano tenuti a discutere dei problemi scambiati e delle relative soluzioni alla presenza di giudici, notai, governanti e di una platea di spettatori sovente assai folta. Non era infrequente, inoltre, che tali disfide si facessero parecchio incandescenti, sconfinando dal piano scientifico a quello dell’invettiva personale. D’altra parte, la posta in palio poteva essere molto alta: il vincitore di una pubblica disfida matematica, ossia colui che aveva risolto il maggior numero di problemi, non guadagnava solo gloria e prestigio, bensì più concretamente anche un eventuale premio in denaro, nuovi discepoli paganti, l’acquisizione o la conferma di una cattedra, aumenti di stipendio e spesso incarichi professionali ben remunerati. La carriera dello sconfitto, invece, rischiava di rimanere seriamente compromessa.

Il secondo protagonista di questa storia è Gerolamo Cardano: nato a Pavia il 24 settembre 1501, si laureò in medicina nel 1526, ma solo nell’estate del 1539 fu accolto dal Collegio dei medici di Milano, che aveva osteggiato la sua elezione a causa dei suoi illegittimi natali. Divenne in seguito il medico più famoso e richiesto della città. Informato da un matematico che Tartaglia aveva trovato la formula risolutiva delle equazioni di terzo grado, si mise in contatto con lui all’inizio del 1539 per avere la formula, ma Tartaglia rispose negativamente alla richiesta: “quando vorrò pubblicar tal mia inventione la vorrò publicar in opere mie et non in opere de altri”. Dopo una corrispondenza dai toni abbastanza vivaci, Tartaglia si recò a Milano da Cardano in primavera: ebbero a disposizione diverso tempo per discorrere tra loro e confrontarsi su vari temi, uno dei quali non poteva che essere la questione delle equazioni cubiche e delle loro regole risolutive. Cardano giurò a Tartaglia che non avrebbe mai svelato la formula risolutiva e questi si lasciò convincere a rivelarla. I due smisero di scriversi nel gennaio del 1540 e non sono documentati ulteriori contatti personali o epistolari.

Mentre Tartaglia rivelava la formula, Cardano era in compagnia di un giovanissimo allievo, Ludovico Ferrari. Nato a Bologna il 2 febbraio 1522, Ferrari discendeva da una famiglia milanese: rimasto presto orfano, fu mandato a Milano come servitore nell’abitazione di Cardano, il quale, accortosi della sua predisposizione agli studi, si prese cura della sua istruzione. Nel 1542 si recarono a Bologna per far visita a un matematico: questi mostrò loro un vecchio taccuino appartenuto al suocero, Scipione Dal Ferro, nel quale i due trovarono la formula risolutiva delle equazioni cubiche. Dopo aver appreso la formula, Cardano e Ferrari si persuasero della necessità di diffondere in tutto il mondo scientifico le nuove conoscenze acquisite e Cardano, in particolare, si sentì svincolato dal giuramento fatto a Tartaglia. Nel 1545, Cardano pubblicò il volume Artis magnae, sive de regulis algebraicis più noto come Ars Magna, un testo destinato a imprimere una svolta profonda nella storia dell’algebra, determinando l’avvio di una nuova era per le ricerche matematiche. Nel suo trattato, Cardano attribuì agli autori delle formule risolutive i dovuti meriti e riconobbe i contributi di Ferrari, con il quale aveva collaborato. La formula risolutiva delle equazioni cubiche è spesso denominata «formula cardanica» poiché, pur non essendone stato lo scopritore, fu Cardano a farla conoscere al mondo scientifico, e per di più completa di dimostrazione.

Nel 1546, Tartaglia pubblicò Quesiti et inventioni diverse, nel quale si scagliò contro Cardano, che non aveva tenuto fede al giuramento di silenzio. Cardano non replicò all’attacco, ma lo fece Ferrari: il 10 febbraio 1547, inviò a Tartaglia un pubblico «cartello di matematica disfida», proponendogli di misurarsi con lui in un pubblico “duello”. I due continuarono a scambiarsi cartelli dal giugno all’ottobre del 1547 e si scontrarono il 10 agosto 1548 a Milano. Tartaglia abbandonò la disputa dopo il primo giorno, perché la riteneva invalidata dal comportamento del pubblico presente, apertamente schierato a favore dell’avversario, ma dichiarò di esserne il vincitore, contestando alcune delle risposte di Ferrari. Non possiamo sapere come siano andate davvero le cose, ma la maggior parte delle fonti riconosce in Ferrari il vincitore dello scontro.

Tartaglia morì a Venezia il 13 dicembre 1557, in solitudine e povertà. Ferrari morì a soli quarantatre anni, probabilmente avvelenato dalla sorella. Cardano morì il 20 settembre 1576, dopo aver visto giustiziare uno dei suoi figli per uxoricidio ed essere stato condannato dall’Inquisizione.

 

COMMENTO:

Quanto è raccontato in questo libro costituisceun complesso di vicende tanto sorprendenti e appassionanti da richiamare, crediamo, la curiosità anche dei non addetti ai lavori: vicende ricche di situazioni dal sapore romanzesco – intrighi, segreti, arroventate dispute erudite – e animate da personaggi affascinanti, geniali e bizzarri, capaci di eccellere nella loro epoca sia per virtù di intelletto che per umane debolezze. Con queste parole nell’introduzione, l’autore ci fornisce un ottimo motivo per leggere questo libro. Per molte persone, è difficile immaginare che tante passioni possano animare la scoperta di una formula matematica: per questo tutti coloro che considerano la matematica arida e priva di passionalità dovrebbero leggere questa storia.

 

Le ultime righe del libro:

Nella prima metà del Cinquecento, di fatto, Scipione Dal Ferro, Niccolò Tartaglia, Gerolamo Cardano e Ludovico Ferrari furono i quattro scintillanti moschettieri che illuminarono il cielo dell’algebra con le loro straordinarie e feconde scoperte. Scoperte originate non solo da genio creativo e abilità tecnica, ma altresì da passione, dedizione, perseveranza, competizione, gelosia, ambizione, stima, risentimento, impeto, sofferenza. Insomma, da tutto il carico di umanità che si può nascondere anche dietro una formula matematica.

Pubblicato in Libri
Venerdì, 02 Agosto 2013 15:40

L'universo elettrico

TRAMA:

Dall’introduzione:

Le vicende in cui ci imbatteremo hanno a che fare con la religione, l’amore e l’imbroglio non meno che con la scienza oggettiva e la tecnologia. Ci faranno spaziare dalle strade di Amburgo durante un bombardamento della seconda guerra mondiale alla mente di Alan Turing, geniale inventore del computer, perseguitato proprio dalle autorità del paese che aveva salvato; da Michael Faraday, nato nei bassifondi e tenuto in scarsa considerazione dai suoi contemporanei a causa della sua fede religiosa (grazie alla quale, però, fu il primo a vedere le forze elettriche intrecciarsi invisibili nello spazio), a un pittore, Samuel Morse, che si candidò entusiasta a sindaco di New York con un programma di persecuzioni contro i cattolici, e che apprese più di quanto non fosse mai disposto ad ammettere sul funzionamento dei telegrafi da un pioniere il quale non riusciva a credere che qualcuno volesse brevettare un’idea così ovvia.

Incontreremo un esuberante immigrato in America poco più che ventenne, Alexander Bell, deciso a tutto per conquistare l’amore di una studentessa adolescente sorda, e il quarantenne Robert Watson-Watt, che invece cerca disperatamente di sfuggire a un matrimonio noioso e al tedio della città di Slough degli anni 1930. E ancora Otto Loewi, che si sveglia la notte prima di Pasqua rendendosi conto di aver risolto il problema di come l’elettricità opera nel nostro corpo, ma che il mattino dopo, disperato, non riesce a leggere gli appunti scarabocchiati che ha buttato giù accanto al letto durante la notte; e il ragazzo scozzese di campagna, James Clerk Maxwell, che per anni alla scuola elementare viene trattato da tonto dai compagni prepotenti, eppure diviene il massimo scienziato teorico del XIX secolo, capace di concepire la struttura intima dell’universo in modo che gli scienziati delle epoche successive riconosceranno profondamente vero. Tutte queste vicende mettono in luce come la forza immensa dell’elettricità fu gradualmente svelata, come fu sottratta al suo regno occulto, e che cosa noi, esseri umani imperfetti, abbiamo fatto dei poteri accresciuti che essa ci ha conferito.

 

COMMENTO:

Una delle caratteristiche principali del libro è la sua semplicità: i passaggi più complessi sono lasciati alle note in fondo al testo, che spiegano il funzionamento delle macchine descritte, mentre il resto della trattazione è alla portata di tutti.

La storia degli uomini che hanno reso possibili le comodità del mondo attuale è coinvolgente: in alcuni tratti della storia del radar, ad esempio, si ha quasi l'impressione di leggere un romanzo di Ken Follett, vista la suspense! E poi le vicende di questi uomini, si tratti delle slealtà di Morse o della solitudine di Turing, rendono tutto il mondo della fisica più vicino alla nostra quotidianità.

Pubblicato in Libri
Venerdì, 02 Agosto 2013 15:34

Ipazia e la notte

TRAMA:

Ipazia è una filosofa, matematica e astronoma che insegna al Museo di Alessandria d’Egitto alla fine del IV sec. d.C. Fra le sue imprese c’è il commento a un libro del grande Tolomeo – al sistema geocentrico da lui proposto, Ipazia preferisce il sistema eliocentrico di Aristarco – e alle Coniche di Apollonio di Perga.

Un anno dopo la morte del padre Teone, Ipazia si ritrova a far lezione in un’Alessandria perennemente in tumulto: da quando l’imperatore Teodosio ha proclamato il cristianesimo religione di stato, il patriarca di Alessandria, Cirillo, durante le sue prediche istiga i cristiani alla violenza contro i pagani. Nel frattempo, anche la partenza per Atene di Sinesio, l’allievo preferito di Ipazia, contribuisce a farla sentire amareggiata e offesa per una separazione che sente come un tradimento. A questi si aggiunga il matrimonio di Sinesio con Fulvia: Ipazia ha sempre pensato che avrebbero condiviso la scelta della verginità e che sarebbero invecchiati insieme e, sull’onda dell’emozione, decide di sposare Evandro, un celebre grammatico, amico del padre. Dopo il matrimonio, però, non si concede al marito e questi, a un mese dalle nozze, la lascia.

La Chiesa entra sempre più prepotentemente nelle questioni di stato e Teodosio ordina che vengano requisiti tutti i templi pagani per farne delle chiese cristiane: ad Alessandria si arriva ad una vera e propria carneficina. Ipazia, che si lascia guidare dalla ragione della filosofia, cerca di scoraggiare la violenza: «Se vogliamo pensare e agire secondo virtù, dobbiamo volere un mondo in cui a ognuno sia permesso di onorare i suoi dei, quali che siano, e di praticare pubblicamente il suo culto, senza che nessuno lo infastidisca o lo offenda nelle sue convinzioni e nei suoi riti.»

La comunità dei pagani diviene sempre più debole: gli elleni più noti e influenti abbandonano Alessandria e Ipazia diventa il punto di riferimento per i pagani rimasti in città. Decide di sfidare Cirillo a un duello di idee in pubblico, come soluzione pacifica dello scontro, per trovare in qualche modo una mediazione tra cristiani e pagani. Durante il duello, Cirillo definisce Ipazia una prostituta e non si comporta in maniera leale, ma la lotta si conclude più o meno alla pari. Ipazia è come assente da quando uno dei cristiani, tra il pubblico, le ha chiesto se sa chi sia sua madre. A Ipazia è sempre stato detto che sua madre, una nobile dell’Illiria, è morta di parto, ma non è così: la sua vera madre è Demetra, la serva che le ha fatto da balia. Nei giorni che seguono, le due donne parlano a lungo. Presa dai suoi pensieri e dalla nuova vita che ha cominciato a vivere, Ipazia trascura il pericolo e un giorno, andando a lezione, viene ferita gravemente. Il medico riesce in qualche modo a salvarla, ma dopo il grande pericolo corso le ordina, per il bene della sua salute, di trasferirsi in campagna.

Qualcosa in lei è davvero cambiato: in Antinoo, servitore fedele, trova finalmente l’anima che la completa. Quando viene raggiunta dai suoi allievi, Ipazia decide di fare lezione in campagna: si forma così una comunità filosofica, una vera scuola, come aveva sempre desiderato.

Nel frattempo, Sinesio, divenuto vescovo di Tolemaide, ha perso tutto visto che i tre figli sono morti e Sinesio, sentendo di non aver molto da vivere, cerca di contattare Ipazia: muore tra le sue braccia, finalmente rappacificato con lei e con se stesso.

Ipazia torna dalla sua dimora di campagna, intenzionata a spendere la propria vita in nome della verità. Alessandria si presenta preda del furore delle opposte fazioni. Ipazia tenta di risolvere la situazione aiutando il prefetto Oreste, ma è ormai convinta da tempo che la filosofia è impotente contro l’irrazionalità della folla. Riprende il suo insegnamento al Museo, ma attorno a lei tutto parla di abbandono.

Dopo la decisione di Oreste di proibire una processione organizzata dal vescovo, Cirillo fomenta la reazione, dando la colpa a Ipazia, sicuramente l’ispiratrice delle scelte del prefetto. Aggredita mentre si reca al Museo, Ipazia viene uccisa sul sagrato del Cesareo, il tempio cristiano: Le gridano insulti e sconcezze, la toccano, le strappano le vesti, gridano, ridono risate oscene. Si spingono gli uni con gli altri, si calpestano, corrono come un branco di animali infuriati o sorpresi da un incendio. Non sono più una somma di uomini, ma un unico immenso animale acefalo che corre qua e là senza sapere dove né perché, reso cieco da un immenso furore. Sono come una muta di cani che abbia annusato l’odore della preda, ne abbia già assaggiato il sangue e non possa più fermarsi, non oda più il richiamo del padrone che vorrebbe trattenerla. Hanno bocche spalancate nell’urlo dell’odio, mani adunche che graffiano e sbranano, occhi sbarrati, senz’altra espressione che un’ira cieca e bestiale. La tirano da ogni parte, lacerandole la pelle e poi la carne; la prendono a calci sul ventre, sul petto, sul viso.

 

COMMENTO:

Libro molto coinvolgente e attuale: la storia di intolleranza che viene descritta potrebbe essere avvenuta ai giorni nostri. Ipazia è descritta a tinte vivaci: è un personaggio che suscita simpatia, una donna che vive per la verità e per la conoscenza, e che cerca di cambiare in qualche modo il corso della storia. Le sue intuizioni matematiche passano in secondo piano rispetto alla vicenda che la vede protagonista, ma è interessante vedere la lungimiranza con la quale ha proposto il sistema eliocentrico, andando contro il grande Tolomeo, e lo studio di mondi a più dimensioni.

Per il poco risalto che la sua vita ha avuto nel passato (difficilmente nominata quando si parlava dei matematici del passato), pareva che Cirillo avesse avuto ragione di lei, riuscendo a far dimenticare la sua esistenza: questo libro ce la descrive finalmente nella sua umanità e nella sua tensione verso la verità.

 

Questo libro è ora pubblicato con il titolo "Ipazia muore", l'autrice usa il suo vero nome, Maria Moneti Codignola, e la casa editrice è La Tartaruga Edizioni.

Pubblicato in Libri
Etichettato sotto
Venerdì, 02 Agosto 2013 15:13

I grandi matematici

TRAMA:

Bell ci spiega l’intento di questo libro nell’introduzione, dicendo che vuole condurre il lettore fino a certe idee direttrici che dominano presentemente vasti campi della matematica, e di giungervi attraverso le esistenze degli uomini che ne hanno avuta l’iniziativa. In questo modo, conosciamo i grandi matematici, le loro vite, i loro pregi e i loro difetti, insieme alle loro più grandi creazioni: Lo scopo dei capitoli che seguono è quello di delineare i tratti caratteristici di tale contributo, percorrendo le esistenze dei grandi matematici e facendole risaltare sullo sfondo di alcuni problemi che dominano la loro epoca.

Il testo comincia con le vite di Zenone, Eudosso e Archimede, spiriti moderni in cervelli antichi, per saltare poi quasi due millenni e giungere a Cartesio, che il 10 novembre del 1619 dà vita alla geometria analitica e, per conseguenza, alla matematica moderna. Prosegue con Fermat: è stato un matematico di prim’ordine, un uomo di un’onestà senza macchia, e un matematico che non ha uguale nella storia. Suo contemporaneo è Pascal che, secondo Bell, ha sprecato il proprio ingegno, spingendosi verso una nevropatia religiosa. Si procede con Newton e Leibniz, creatori del calcolo infinitesimale, per il quale nacque una disputa che coinvolse anche molti dei loro contemporanei. La dinastia dei Bernouilli precede e accompagna l’astro di Eulero, il matematico più prolifico della storia, genio universale. Lagrange, Laplace, Monge, Fourier e Poncelet ci accompagnano attraverso la Francia della Rivoluzione e l’impero napoleonico: Lagrange utilizza metodi analitici generali per i suoi teoremi, ottenendo risultati incomparabili, Laplace si dedica alla teoria della probabilità e all’applicazione della legge della gravitazione di Newton, Monge inventa la geometria descrittiva, Fourier si occupa di fisica matematica con la Teoriaanalitica del calore, Poncelet crea la geometria proiettiva, durante la prigionia dopo la campagna di Russia.

Nel XIX secolo incontriamo Gauss, il re dei matematici: Bell lo riconosce, con Archimede e Newton, come uno dei più grandi matematici e sostiene che tutti e tre hanno fatto scattare al tempo stesso le molle principali della matematica pura e della matematica applicata. Alla figura di Gauss si associa quella di Sofia Germain, che comunica al grande matematico alcune osservazioni dopo aver letto le sue Disquisitiones Arithmeticae, nascondendosi dietro uno pseudonimo maschile. Nello stesso secolo, incontriamo Cauchy, che ha un ruolo di primo piano nella matematica moderna: i suoi lavori furono rivoluzionari, come i suoi tempi. È uno dei promotori della teoria dei gruppi e si occupa delle funzioni di una variabile complessa.

Lobatchewsky rivoluziona la geometria, creando uno dei più grandi capolavori di tutta la matematica, un lavoro che costituisce una vera pietra miliare sulla via del progresso del pensiero umano. Jacobi consacra tutta la sua vita all’insegnamento e alle ricerche matematiche; Hamilton lascia ai matematici, con il suo lavoro, la possibilità di “fabbricare” algebre a volontà, ma il suo nome è collegato in particolare alla teoria dei quaternioni. Galois e Abel sono accomunati dal genio e dalla brevità delle loro vite sfortunate: Abel ha permesso la soluzione di molti importanti problemi che, senza la sua opera, sarebbero rimasti insoluti e Galois ha lasciato lavoro per intere generazioni di matematici, nelle ultime volontà scritte in tutta fretta la notte prima di morire. Cayley e Sylvester hanno creato la teoria degli invarianti, di importanza fondamentale per la fisica moderna; Weierstrass, insegnante di scuola superiore, ha arricchito la matematica con le sue idee, concepite nell’indipendenza consentitagli dall’isolamento nel quale era costretto a vivere. Alla sua immagine si collega quella di Sonia Kowalewsky, sua allieva, abile matematica morta prematuramente. Boole compie lavori in algebra, ma soprattutto riduce la logica a un’algebra semplice; Hermite, secondo Bell, si classifica tra i matematici nati della storia, grazie al carattere generale dei problemi che ha affrontatoe all’ardita originalità dei metodi da lui immaginati per risolverli. Kummer, Kronecker e Dedekind, con l’invenzione della teoria moderna dei numeri algebrici […] hanno fatto per l’aritmetica superiore e la teoria delle equazioni algebriche ciò che Gauss, Lobatchewsky, Bolyai e Riemann hanno fatto per la geometria, emancipandola dalla schiavitù del sistema troppo ristretto di Euclide. Riemann è statouno dei matematici più originali dei tempi moderni e la sua ipotesi è uno dei problemi ancora insoluti della matematica. Poincaré fu l’ultimo scienziato che abbracciò praticamente tutto il dominio della matematica, pura e applicata, e in pochi anni ha prodotto una grande massa di lavori.

La carrellata si conclude con Cantor, colui che ha concepito un nuovo modo di considerare l’infinito matematico, diventando uno degl’innovatori più radicali nella storia della matematica.

 

COMMENTO:

La scelta di biografie proposta da Bell permette di attraversare la storia d'Europa degli ultimi secoli, vivendo, con gli occhi dei protagonisti di quei tempi, la Rivoluzione francese, le scorrerie di Napoleone e le guerre del XIX secolo.

L'italiano con cui è scritto non è sicuramente molto attuale, visto che Bell ha scritto il libro nel 1937 e, soprattutto per quanto riguarda gli ultimi matematici, alcuni discorsi sono un po' superati, ma i profili tracciati meritano sicuramente una lettura. A volte viene quasi il dubbio che Bell abbia incontrato personalmente ognuno di loro...

Pubblicato in Libri
Etichettato sotto
Giovedì, 01 Agosto 2013 21:15

Vite matematiche

TRAMA:

Come ci dicono gli autori nell’introduzione, nel corso degli ultimi cinquant’anni sono stati dimostrati più teoremi che nei precedenti millenni della storia umana, eppure soltanto flebili echi di questa fervida attività di pensiero giungono al largo pubblico. Infatti, a parte casi sporadici la matematica rimane per lo più ignorata. Obiettivo di questo libro è quindi portare alla ribalta alcuni dei protagonisti di questa straordinaria avventura intellettuale, che ha messo a nostra disposizione nuovi e potenti strumenti per indagare la realtà che ci circonda.

Il punto di partenza sono i ventitre problemi di Hilbert, che diedero vita a un enorme complesso di ricerche di carattere logico e fondazionale.

BERTRAND RUSSELL (1872-1970) – Scrisse moltissimo, spaziando dai fondamenti della matematica alla logica, dalla teoria della conoscenza alla storia della filosofia, dalla filosofia morale alla polemica politica. È noto per il suo pacifismo, per essersi occupato di fondamenti della matematica e per il paradosso che porta il suo nome.

GODFREY H. HARDY (1877-1947) – Hardy è stato prima di tutto una mente molto brillante, e poi certamente un matematico di fama notevole. Viene ricordato per il ruolo particolare che ebbe nella scoperta del genio indiano Ramanujan e per la stesura dell’Apologia di un matematico.

EMMY NÖTHER (1882-1935) – È stata il punto di riferimento per l’algebra astratta, ma soprattutto per le donne americane che decidevano di dedicarsi alla matematica. Purtroppo la sua morte prematura le ha impedito di dare concretezza ad una scuola americana vera e propria. Secondo i suoi nipoti Emiliana e Gottfried: “Ciò che importa è che ha affrontato le difficoltà, ha perseverato, malgrado tutte le sciocchezze sulle donne, ed è divenuta uno dei matematici più significativi del suo secolo”.

PAUL ADRIEN MAURICE DIRAC (1902-1984) – Fisico teorico, si è occupato della fisica dell’infinitamente piccolo ed è considerato l’ispiratore e il fondatore dei fondamenti della teoria quantistica dei campi. La ricerca della bellezza matematica è stato il tratto distintivo della sua opera e ha dato frutti paragonabili a quelli di Newton e Einstein, anche se talvolta lo ha indotto a battaglie isolate nella comunità scientifica.

JOHN VON NEUMANN (1903-1957) – È ricordato per il suo contributo alla teoria dei giochi che permette un nuovo approccio allo studio dell’economia, per la sua collaborazione al Progetto Manhattan, ma soprattutto perché è considerato uno dei padri dell’informatica. Certamente ci troviamo di fronte ad un vero gigante del ventesimo secolo, una figura forse unica nella sua sbalorditiva capacità di coniugare un’intelligenza teorica di straordinaria profondità ad una visione “pratica” della scienza.

KURT GÖDEL (1906-1978) – Nella sua tesi di laurea, solamente ventitreenne, dimostrò il suo primo grande risultato, il teorema di completezza, importantissimo per la logica. Tre anni dopo, nel tentativo di estendere il risultato alla matematica, scoprì che ci sono verità indimostrabili e arrivò alla dimostrazione dei teoremi di incompletezza, risolvendo il secondo problema di Hilbert e distruggendo il suo programma sulla consistenza.

ROBERT MUSIL (1880-1942) – Scrittore, ma laureato in ingegneria, Musil si mantiene aggiornato per quanto riguarda le idee matematiche e fisiche che affollano l’inizio del XX secolo. Eppure spesso non accetta di essere considerato un “saggista” intriso di idee scientifiche, o peggio ancora un filosofo, si schermisce, rivendica il carattere specificamente poetico della sua opera.

ALAN MATHISON TURING (1912-1954) – Ebbe una parte importante nella decrittazione dei messaggi della macchina tedesca Enigma, lavorò in modo originale ai teoremi di incompletezza di Gödel e ai problemi di decidibilità di Hilbert e può essere considerato uno dei padri fondatori dell’era informatica e dell’intelligenza artificiale.

RENATO CACCIOPPOLI (1904-1959) – Impegnato soprattutto nell’ambito dell’analisi funzionale, dove dà contributi notevoli, ha il merito di aver cercato di sviluppare delle teorie generali, riavvicinando l’analisi italiana alle punte più avanzate della ricerca. Nella sua vita è stato anche un convinto oppositore del regime fascista, tanto che la famiglia denuncia suoi fantomatici problemi mentali per evitargli il carcere.

BRUNO DE FINETTI (1906-1985) – Fondamentali i suoi contributi alla teoria della probabilità e alla statistica, oltre che ad altri rami del sapere, come l’economia e la biologia. È forse stato uno dei primi matematici in Italia in grado di risolvere problemi di analisi tramite l’uso di computer.

ANDREJ NIKOLAEVIC KOLMOGOROV (1903-1987) – È probabilmente il maggior matematico sovietico del secolo, come dimostrato dalla sua vasta ed articolata attività scientifica. In molti di questi lavori il suo contributo ha addirittura rivoluzionato la nostra visione del problema.

BOURBAKI – Dopo l’interruzione per la Grande Guerra dello sviluppo della matematica francese, Jean Dieudonné, Jean Delsarte, Claude Chevalley, André Weil e Henri Cartan decidono di redigere un nuovo trattato, che abbia come obiettivo il massimo rigore possibile, con lo pseudonimo di Bourbaki che regala un alone di mistero alla storia del gruppo. Con il passare degli anni, diventa difficile mantenere vivi gli ideali fondazionali, tanto che dal 1983 non compare più alcuna pubblicazione con il suo nome.

RAYMOND QUENEAU (1903-1976) – Lettore infaticabile dalla cultura vastissima, Queneau si è trovato in contatto con i principali movimenti letterari e culturali presenti sulla scena parigina fin dagli anni Venti: ciò che lo contraddistingue è il suo interesse costante per la matematica. E non si tratta solo di un “passatempo”, visto che conosce le più recenti teorie scientifiche fin da adolescente.

JOHN F. NASH JR (1928- ) – Forse uno dei più brillanti matematici del ventesimo secolo, ha ottenuto risultati unanimemente considerati di altissimo valore. Purtroppo il suo lavoro è stato molto limitato nel tempo a causa della malattia da cui è affetto fin da giovane, la schizofrenia paranoide. Fortunatamente, nell’ultimo periodo della sua vita è uscito in parte dalla malattia ed è stato insignito del Premio Nobel, nel 1994, per il suo contributo alla teoria economica con i suoi risultati nella teoria dei giochi.

ENNIO DE GIORGI (1928-1996) – Ottenne importati risultati grazie ad un’intuizione fulminea unita ad una capacità eccezionale di far seguire ad essa una dimostrazione curata nei minimi dettagli. È ricordato in modo particolare dai numerosi allievi, per i quali è stato sempre una presenza importante: hanno appreso dal suo insegnamento e dal suo esempio un modo particolare di “fare matematica”.

LAURENT SCHWARTZ (1915-2002) – Schwartz è un intellettuale che ha vissuto tutti i grandi avvenimenti della seconda metà del Novecento, visto che ha dedicato gran parte della sua vita in favore dei diritti dell’uomo e dei popoli. Nella sua autobiografia, Schwartz afferma: “i matematici trasferiscono nella vita di ogni giorno il rigore del loro ragionamento scientifico. La scoperta matematica è sovversiva. È sempre pronta a rovesciare i tabù. I poteri stabiliti riescono a condizionarla molto poco.

RENÈ THOM (1923-2002) – Ha aperto la strada ad un originale tentativo di applicare la matematica ai fenomeni naturali, oggi noto come “Teoria delle catastrofi”.

ALEXANDER GROTHENDIECK (1928- ) – Il profano che si accosta all’opera matematica di Grothendieck dovrà […] guardar la matematica come un’arte e il matematico come un artista. Ha avuto un periodo produttivo molto limitato, visto che a 42 anni abbandona la matematica per dedicarsi al suo radicale antimilitarismo.

GIAN-CARLO ROTA (1932-1999) – Insegnando ed esplorando da anticonformista la matematica e la filosofia, ha rimesso in discussione, con coraggio ed energia, le correnti di pensiero più in voga, svelando nuovi affascinanti scenari e toccando profondi livelli di conoscenza. Matematico e filosofo, è stato un grande comunicatore e ha dato profondi contributi nell’ambito della combinatoria topologica.

STEVE SMALE (1930- ) – Oltre agli impegni matematici, si schiera contro il militarismo del proprio Paese a fianco degli studenti, tanto che approfitta del Congresso di Mosca per lanciare e fare sottoscrivere un appello di condanna dell’aggressione americana e di appoggio alla causa vietnamita.

MICHAEL F. ATIYAH (1929- ) – È senza dubbio uno dei matematici più prolifici e più influenti dell’ultimo secolo. Nelle motivazioni del premio Abel, del quale è stato insignito nel 2004, per la dimostrazione del teorema dell’indice, si legge: “Questo teorema ci permette […]di intravedere l’intrinseca bellezza della matematica in quanto stabilisce un nesso profondo tra discipline che appaiono fra loro completamente separate”.

VLADIMIR IGOREVIC ARNOL’D (1937- ) – A soli vent’anni ha risolto il tredicesimo problema di Hilbert, è noto per aver generalizzato il teorema di Kolmogorov e per i suoi studi di idrodinamica. È un ottimo insegnante e ha avuto un numero elevato di allievi, molti dei quali sono diventati matematici di prima grandezza e hanno contribuito a diffondere le sue idee ed il suo approccio unitario alla matematica (e alla fisica), ai suoi problemi e al suo insegnamento.

ENRICO BOMBIERI (1940- ) – Unico italiano ad essere stato insignito della Medaglia Fields (1974), “Bombieri è uno dei più eclettici e famosi matematici del mondo”, come recita il testo ufficiale della nomina a membro della National Academy of Sciences.

MARTIN GARDNER (1914- ) – È il più autorevole e prolifico scrittore di matematica ricreativa di ogni epoca e paese e la sua abilità si esprime nel saper affrontare anche le parti più complesse della matematica, trovando sempre degli spunti curiosi e coinvolgenti. Non ha compiuto studi scientifici e la sua cultura matematica è dovuta a studi autonomi.

F. WILLIAM LAWVERE (1937- ) – La ricerca dell’unità, di un quadro concettuale che renda chiare ed esplicite le nozioni fondamentali […] ha segnato fortemente il suo lavoro scientifico, fin dagli inizi, e continua tuttora a rappresentarne una forte componente. Studia i fondamenti anche perché connessi ad una delle sue passioni: la formazione matematica.

ANDREW WILES (1953- ) – È noto per aver dimostrato l’ultimo teorema di Fermat, al quale ha lavorato per sette anni in completa solitudine. Nell’intervista riportata riconosce la difficoltà insita nella matematica e per questo è necessario dedicarle la propria vita solo se si ha una vera passione.

 

COMMENTO:

Interessante excursus nella matematica del Novecento, secolo ricco di una fervida attività di pensiero.

A seconda degli autori, nell’articolo dedicato ad ogni matematico o scrittore matematico vengono sottolineati maggiormente gli aspetti biografici o quelli professionali, spesso inscindibili, vista la parte rilevante che la matematica ha avuto nella vita di molti di loro.

La lettura non è particolarmente impegnativa e gli articoli possono essere letti nell’ordine che si preferisce.

Pubblicato in Libri
Etichettato sotto
Giovedì, 01 Agosto 2013 16:42

Il genio dei numeri

TRAMA:

Nato il 13 giugno del 1928, John Forbes Nash Junior mostrò da subito un gran talento per la matematica e una grande passione per lo studio e i libri: non si dedicava certo alle attività tipiche dei bambini della sua età e questo, per i suoi genitori, era fonte di preoccupazione costante.

Nel giugno del 1945 giunse al Carnegie Institute of Technology, con l’intento di diventare un ingegnere elettrotecnico come il padre, ma l’interesse per la matematica non tardò a conquistarlo: uno dei suoi insegnantilo definì “un giovane Gauss”. Nel 1948, scelse l’università di Princeton, ritenuta un ottimo centro per lo studio della matematica. La grande fortuna di Nash, se la si vuole chiamare fortuna, fu di entrare sulla scena matematica nel momento e nel posto tagliati su misura per i suoi bisogni particolari.

Fin da subito, Nash si distinse per la propria originalità e, soprattutto, per la propria presunzione.

A Princeton, numerosi erano i grandi con i quali Nash poté entrare in contatto. Fra di essi c’era John von Neumann, che aveva ideato, negli anni Venti, la teoria dei giochi e aveva scritto, consapevole del suo possibile utilizzo nell’ambito dell’economia, The theory of games and economic behavior. Nash si rese subito conto che questo libro, per quanto innovativo, conteneva solo un teorema importante, quello del minimax, ma per il resto costituiva una trattazione incompleta dell’argomento ed era poco applicabile alle scienze sociali. Scrisse così il suo primo saggio, “Il problema della contrattazione”,un’opera di carattere straordinariamente pratico per un matematico, soprattutto per un giovane matematico: caratterizzato da una grande originalità, il saggio forniva le risposte giuste al problema.

Nell’estate del 1949, John Nash si rivolse a Albert Tucker perché gli facesse da relatore della tesi, convinto di aver trovato qualche “buon risultato collegato alla teoria dei giochi”. Tucker fu una grande risorsa, visto che lo stimolò a continuare anche quando Nash cambiò idea e permise uno dei risultati più importanti della teoria dei giochi: l’equilibrio di Nash.

Dal 1950 al 1954, Nash lavorò per la RAND, un istituto civile di ricerche strategiche di Santa Monica, cheattrasse alcune delle menti migliori della matematica, della fisica, delle scienze politiche e di quelle economiche. L’originalità, l’eccentricità e la genialità di Nash lo distinsero subito e fu un duro colpo per i suoi superiori quando, nell’estate del 1954, furono costretti a licenziarlo in seguito ad un arresto dovuto ad atti osceni in luogo pubblico, ovvero, più specificamente, per la sua omosessualità.

Per quanto oggi possa sembrare strano, la dissertazione di dottorato che un giorno avrebbe fatto vincere un Nobel a Nash non ricevette una considerazione sufficiente per assicurargli un’offerta da un dipartimento matematico prestigioso. La teoria dei giochi non ispirava molto interesse o grande rispetto fra l’élite matematica,Nash quindi cercò un ambito matematico più puro, un problema importante, la cui soluzione gli sarebbe valsa i riconoscimenti dei colleghi: si occupò delle varietà algebriche reali e aprì la strada alla soluzione di nuovi problemi. Questo risultato gli valse il riconoscimento di status di matematico tra i suoi pari, ma non ottenne nessuna offerta dal dipartimento di matematica di Princeton, a causa dell’opposizione di alcuni membri della facoltà. Accettò quindi l’offerta del MIT come lettore: il MIT non aveva l’importanza di oggi, era una scuola d’ingegneria in fase di espansione, con un corpo insegnante giovane e quindi meno conosciuto di quello di Harvard o Princeton. Dall’arrivo al MIT nel 1951, Nash, su suggerimento di Wiener, si dedicò alla fluidodinamica, arrivando così al suo lavoro più importante.

Durante un ricovero in ospedale per l’asportazione di alcune vene varicose, Nash conobbe un’infermiera, Eleanor, che una volta dimesso corteggiò. Quando lei scoprì di essere incinta, Nash si mostrò molto contento, ma non manifestò l’intenzione di sposarla e di riconoscere il figlio in arrivo. Nato nel giugno del 1953, John David Stier, senza il cognome del padre, fu presto dato in affidamento e visse i suoi primi anni passando da una famiglia all’altra. Nash si comportò in modo insensibile ed egoista anche quando la donna cercò di coinvolgere i suoi genitori nella loro storia, perché lui si decidesse ad occuparsi del mantenimento del figlio.

Dopo la cacciata dalla RAND, tornò a Cambridge dove l’alunna ventunenne Alicia Larde, invaghita di Nash, riuscì a conquistarlo dopo un periodo di intenso corteggiamento: si sposarono nel febbraio del 1957.

Nash continuò i suoi lavori nell’area delle equazioni differenziali alle derivate parziali, ma venne preceduto da Ennio De Giorgi, matematico italiano praticamente sconosciuto: per lui fu un duro colpo, nonostante il suo lavoro fosseconsiderato quasi da tutti come un fondamentale passo avanti.

A trent’anni, Nash aveva già raggiunto importanti traguardi e la sua carriera appariva promettente eppure si sentiva più frustrato e insoddisfatto che mai. A trent’anni, Nash temeva che la parte migliore della sua vita creativa fosse finita.

Cominciò a dedicarsi alla congettura di Riemann e, nonostante molti colleghi abbiano cercato di metterlo in guardia da approcci già tentati, correndo i rischi del fallimento cercava di esorcizzare il timore del fallimento stesso. L’inaspettata gravidanza di Alicia fu forse la goccia che fece traboccare il vaso, compromettendo il già delicato equilibrio del matematico: all’inizio del 1959, lavorava ancora al problema di Riemann, ma affermava di voler costituire un governo universale. Dopo un intervento orribile di Nash ad una conferenza, Alicia consultò uno psichiatra della facoltà di medicina del MIT e, anche spinta dai timori per la propria incolumità, fece ricoverare il marito al McLean Hospital. 

Il bambino nacque poco prima che Nash fosse dimesso. Al rientro dal ricovero coatto, Nash decise di lasciare la cattedra al MIT e recarsi in Europa, dove tentò a più riprese di rinunciare alla propria cittadinanza americana, per potersi dichiarare cittadino del mondo. Nell’aprile del 1960 venne ricondotto in patria e dieci mesi dopo venne ricoverato di nuovo, questa volta al Trenton State Hospital, un ospedale pubblico, dove venne sottoposto alla terapia del coma insulinico:Nash avrebbe definito la terapia insulinica una “tortura” e ne risentì per molti anni ancora.

Nel 1961 Nash ottenne un incarico di ricercatore presso l’Institute for Advanced Study, ma già dal 1962, al termine di un suo viaggio in Europa, appariva molto malato. A partire dall’estate del 1963, fu dichiarato il divorzio da Alicia, che riteneva di essere una presenza troppo scomoda nell’eventuale percorso di guarigione del marito. Questo non le impedì di stargli vicino e di continuare ad assisterlo. Venne di nuovo ricoverato, questa volta alla Carrier Clinic, un istituto privato vicino a Princeton, fino al 1965.

Nel 1968, al suo quarantesimo compleanno, Nash risiedeva con la madre, ormai completamente dimenticato dal mondo: l’esistenza di uno schizofrenico è stata paragonata a quella di una persona che viva in una prigione di vetro e che batta alle pareti, incapace di essere udita, eppure molto visibile. Alla morte della madre, nel 1969, la sorella Martha lo fece ricoverare di nuovo: una volta dimesso, egli interruppe ogni rapporto con la sorella e partì per Princeton. Le sue condizioni apparivano stabili: Nash si dichiarò in seguito molto attento a non attirare l’attenzione per non essere ricoverato di nuovo. Visse con Alicia e il figlio dal 1970.

È impossibile dire con esattezza quando si verificò la miracolosa guarigione di Nash, che gli altri cominciarono a notare più o meno all’inizio degli anni novanta: il merito non fu di nuove cure. Secondo Nash, il merito spetta a lui, alla sua volontà di uscire dalla malattia. Nel 1994, la Reale Accademia svedese delle scienze decise di conferire al matematico il Nobel per l’economia, in considerazione dei risultati ottenuti all’inizio della sua carriera.

Il suo impegno attualmente continua con nuovi studi scientifici e, nella sua vita privata, ha ritrovato un equilibrio accanto ad Alicia, che ha accettato di sposarlo di nuovo nel 2001. Nash è riuscito a condividere la sua fortuna con chi gli sta accanto. Ha ricostruito il rapporto con John David, il figlio maggiore che una volta non voleva nemmeno sentirlo nominare. Passa molto tempo anche con John Charles, il secondogenito, che, come ha spiegato con orgoglio il giorno delle nozze, sta cercando di pubblicare una dimostrazione matematica. Parla ancora al telefono con la sorella Martha ogni settimana. Infine […]ha riconosciuto il ruolo fondamentale che Alicia svolge nella sua esistenza.

 
COMMENTO:
Una storia straordinaria, una vicenda umana molto toccante e coinvolgente, un libro che ci rende partecipi di una vita vissuta nella morte della follia, ma che è poi inaspettatamente risorta. 
Rileggere questo libro dopo sei anni dalla prima lettura mi ha permesso di apprezzarlo e comprenderlo meglio.
Da questo libro è stato tratto il film A beautiful mind di Ron Howard, con Russell Crowe: il film omette molti particolari che invece trovano posto nel libro, che si mostra per questo più completo. Anche perché il libro riporta i vissuti dei matematici suoi contemporanei, le sensazioni di Alicia e le sensazioni di Nash. Il film rende comunque al meglio la voglia di uscire dalla malattia: Nash afferma infatti di aver compiuto un atto di volontà e sente la propria guarigione come frutto di una sua scelta.
Pubblicato in Libri
Giovedì, 01 Agosto 2013 16:31

Il taccuino segreto di Cartesio

TRAMA:
Cartesio nacque il 31 marzo del 1596. Studiò presso il collegio dei gesuiti a La Fléche e, a causa della sua gracilità, il padre chiese una cura particolare per lui: gli venne quindi concesso di dormire fino a tardi e questo gli permise di sviluppare un metodo di studio autonomo. Nel 1618 si recò in guerra come volontario con Maurizio di Nassau: non pagato, poté però godere di grande libertà e studiare liberamente la scienza.
La mattina del 10 novembre del 1618, Cartesio si trovava a Breda quando, sul tronco di un albero nella piazza principale della città, venne affisso un manifesto. Un olandese spiegò a Cartesio il quesito e questi giunse alla soluzione: la risoluzione dell’enigma olandese riempì Cartesio di entusiasmo per la matematica. Gli aveva rivelato di avere un dono speciale. Cominciò a credere che la matematica racchiudesse il segreto che dà accesso alla comprensione dell’universo. La maggior parte delle mattine al campo rimaneva a letto a scrivere e a leggere di matematica e a esplorarne le applicazioni
Accampato sulle sponde del Danubio, con l’esercito di Massimiliano duca di Baviera, nella notte tra il 10 e l’11 novembre 1619, Cartesio trovò i fondamenti di una mirabile scienza, come scrive nell’opera Olympica, a seguito di tre sogni, che interpretò come l’indicazione che la sua missione nella vita sarebbe stata l’unificazione delle scienze. L’opera di Cartesio avrebbe fatto luce su tutta la matematica, restituendo la sapienza dell’antica Grecia al nostro mondo moderno e avrebbe preparato il terreno per lo sviluppo della matematica fino al XXI secolo.
Nel 1620, Cartesio lasciò l’esercito e all’inizio del 1623 tornò a Parigi dove studiò geometria in solitudine e trascrisse le sue deduzioni in un taccuino, in un linguaggio criptico per evitare che qualcuno potesse trarre la conclusione che era un affiliato dei Rosacroce, una setta che studiava la scienza in segreto per evitare le persecuzioni dell’Inquisizione: se fosse stato identificato come tale, la sua carriera scientifica e forse la sua sicurezza avrebbero potuto essere in pericolo.
Alla fine del 1628, Cartesio si trasferì in Olanda: nel Discorso sul Metodo, dichiarò che si era trasferito in Olanda perché desiderava allontanarsi dai luoghi in cui aveva delle conoscenze e vivere in un paese in cui una popolazione attiva e prospera godeva i frutti della pace. Inoltre in Olanda le leggi che regolavano la stampa delle opere erano più liberali e probabilmente anche questo ebbe il proprio peso nella decisione di Cartesio. Per vent’anni continuò a vagare per il paese, mantenendo contatti epistolari con gli intellettuali d’Europa e con l’amico Mersenne, attraverso il quale filtrava tutta la corrispondenza. 
Nel 1629 Cartesio cominciò a scrivere un’opera sulla fisica e la metafisica, che doveva essere un tentativo di riconciliare la scienza con la fede religiosa, ma la notizia del processo di Galilei lo convinse a non pubblicare le proprie considerazioni, che videro la luce solo quattordici anni dopo la sua morte. 
Durante la sua permanenza ad Amsterdam, ebbe una storia con la sua domestica Hélena Jans, dalla quale ebbe una figlia il 19 luglio del 1635, Francine, che morì di scarlattina nel settembre del 1640: per Cartesio fu una grossa sofferenza. 
Cartesio pubblicò a Leida, nel 1637, in forma anonima il Discorso sul metodo per ben condurre la propria ragione e ricercare la verità nelle scienze. Più la Diottrica, le Meteore e la Geometria che sono saggi di questo metodo. Il libro venne pubblicato in francese, per consentirne una maggiore diffusione, ma in Francia non venne mai pubblicato. La filosofia di Cartesio, che era esposta nel Discorso (oltre che nelle sue opere successive), costituì la base del razionalismo seicentesco, una filosofia che pone l’accento sulla ragione e l’intelletto piuttosto che sul sentimento e l’immaginazione
Cartesio rompe deliberatamente con il passato, ed è deciso a iniziare da capo la ricerca della verità, senza mai fidarsi dell’autorità di qualsiasi filosofia precedente. […] Il suo trattato fu un grande successo editoriale in tutta Europa, ma le polemiche suscitate da quest’opera lo indussero ad allontanarsi ancora di più dalla gente e a interagire con il mondo esterno quasi esclusivamente per lettera.
Cominciò a lavorare alla scoperta che l’ha reso più famoso, il piano cartesiano, e dimostrò che era possibile risolvere con riga e compasso la costruzione della radice quadrata di un numero ma non quella della radice cubica, risolvendo il problema di Delo.
Venne contattato dalla principessa Elisabetta di Boemia, che viveva anch’essa in esilio in Olanda: aveva letto il Discorso e voleva approfondirne la filosofia. Si conobbero nel 1642 e la principessa divenne un’impegnata studiosa della filosofia di Cartesio. Si scambiarono numerose lettere, molto affettuose, tanto che un biografo ipotizzò una relazione intima tra i due. 
Sfinito dalla querelle di Utrecht, durante la quale venne accusato di diffamazione ai danni di Voetius e di ateismo si recò a Parigi, dove conobbe Claude Clerselier, consigliere del Parlamento e appassionato della sua filosofia. Questi gli fece conoscere Pierre Chanut, suo cognato, che divenne presto diplomatico di Francia in Svezia, da dove fece da tramite tra Cartesio e la regina Cristina: Chanut intendeva servirsi della cultura per cementare l’alleanza tra la Francia e la Svezia, e Cartesio rientrava a meraviglia in questo piano.
Cartesio accettò con riluttanza l’invito della regina a recarsi in Svezia per insegnarle la sua filosofia e partì nel 1649. La regina si mostrò una studentessa perfetta, ma voleva ricevere le lezioni di Cartesio dalle cinque del mattino. Cinque mesi dopo l’arrivo a Stoccolma, Cartesio si ammalò e gli venne diagnosticata una polmonite. Per i primi due giorni, Cartesio rifiutò di consultare un medico, ma poi dovette cedere alle insistenze della regina, che gli inviò il suo “secondo dottore”, nemico acerrimo del filosofo. Al terzo giorno, sentendosi meglio, Cartesio chiese che gli venisse preparata una bevanda alcolica con del tabacco: la bevanda gli venne preparata dal medico e, stranamente, Cartesio subì un peggioramento nelle sue condizioni di salute. Morì qualche giorno dopo, l’11 febbraio del 1650.
Chanut, senza consultarsi con nessuno, decise di mandare tutti gli scritti di Cartesio al cognato Clerselier a Parigi, che ne mantenne il possesso fino alla propria morte, avvenuta nel 1684. In seguito scomparvero. 
Nel corso dei suoi studi, Leibniz si appassionò alla filosofia di Cartesio e voleva leggerne tutti gli scritti, per questo si rivolse a Clerselier, nel giugno del 1676. Leibniz aveva gli strumenti per decifrare il linguaggio che Cartesio aveva usato nel suo taccuino, intitolato De solidorum elementis, nel quale il filosofo parlava dei solidi platonici. Leibniz non copiò interamente il taccuino, ma si limitò ad aggiungere alcune note a margine, che solo nel 1987 verranno decifrate da Pierre Costabel. Cartesio aveva analizzato i misteriosi solidi di Platone e tra questi oggetti geometrici tridimensionali aveva scoperto la regola che governa la loro struttura. Era il Santo Graal della matematica greca, qualcosa che i greci avevano agognato di possedere. Ma Cartesio non aveva rivelato a nessuno la sua scoperta. La formula non gli fu quindi mai attribuita e venne in seguito indicata come Formula di Eulero
Gli sforzi di Cartesio per tenere nascoste le sue scoperte furono inutili, visto che le sue opere vennero messe all’Indice nel 1663 e furono ristampate solo nel 1824.
 
COMMENTO:
Interessante e originale biografia di Cartesio, costruita a partire da un taccuino mai ritrovato che lascia aperto un enigma: Cartesio appartenne realmente alla setta dei Rosacroce? Ed inoltre: il taccuino può dimostrare questa appartenenza? 
Leggendo questo libro, non potremo avere una risposta a queste domande, ma potremo essere maggiormente consapevoli della grandezza del genio di Cartesio, che ha saputo anticipare la formula di Eulero.
Pubblicato in Libri
Etichettato sotto
Giovedì, 01 Agosto 2013 15:53

Enrico Fermi, fisico

TRAMA:
Come ci dice Segrè nella prefazione, per quanto Fermi sia vissuto in un’epoca piena di drammatici eventi storici e per quanto, a causa del suo lavoro, si sia trovato ad avere in essi una parte importante, la sua vita più intensa e avventurosa fu quella intellettuale della scoperta scientifica
Fermi nacque il 29 settembre 1901: imparò a leggere e scrivere precocemente e rivelò subito una memoria fenomenale. Si presentò al concorso di ammissione alla Scuola Normale di Pisa il 14 novembre 1918: il saggio aveva un livello e una maestria che avrebbe fatto onore a un esame di laurea universitaria, tanto che il prof. Pittarelli, dell’Università di Roma, disse a Fermi di non aver mai incontrato uno studente come lui e che senza dubbio egli era una persona straordinaria, che sarebbe andato molto lontano e sarebbe diventato uno scienziato importante.
Discusse la tesi il 7 luglio 1922 e gli venne conferita la laurea magna cum laude. In quegli anni, l’interesse dei fisici era focalizzato sulla relatività e Fermi cominciò con i primi lavori proprio nel campo della relatività generale. Studiò a Gottinga e, al rientro a Roma, ricevette, per intercessione di Corbino, l’incarico dell’insegnamento della matematica per i chimici. Lavorò a Leida, poi a Firenze, vinse il concorso di fisica matematica a Cagliari, ma in un ulteriore concorso del 1926, ottenne Roma: in questo modo aveva praticamente raggiunto lo zenith di una carriera universitaria.
In quegli anni, l’insegnamento della fisica era condotto come un servizio per i futuri ingegneri o come preparazione per gli insegnanti delle medie, ma Fermi riuscì a rivoluzionarne l’insegnamento e la gestione. La sede delle attività era il vecchio istituto di fisica dell’Università di Roma sito in via Panisperna 89a: le apparecchiature erano mediocri e l’officina meccanica antiquata, ma, mantenendo frequenti contatti con l’estero, Fermi risollevò lo stato della fisica italiana. 
Il 19 luglio del 1928 sposò Laura Capon, dalla quale ebbe due figli: Nella, 31 gennaio 1931 e Giulio, 16 febbraio 1936. 
Visitò gli Stati Uniti per la prima volta nel 1930: in Europa la situazione stava degenerando, con l’avvicinarsi del secondo conflitto mondiale e la Germania stava perdendo il proprio primato nella fisica, mentre l’America appariva come il paese del futuro, così Fermi cominciò a perfezionare la propria conoscenza dell’inglese e a pubblicare i lavori più importanti in inglese. 
Con la promulgazione delle leggi razziali, Fermi, dato che la moglie era ebrea, cominciò a prendere in considerazione l’idea di un trasferimento negli Stati Uniti e scelse la Columbia University di New York. Il 10 novembre 1938 ricevette l’annuncio telefonico del conferimento del premio Nobel e decise quindi di proseguire per gli Stati Uniti partendo da Stoccolma, dopo aver ritirato il premio.
Alla Columbia, Fermi trovò amici personali e colleghi: ricominciò a insegnare con energia, pur lasciando il primato alla ricerca. 
Gli americani ancora non capivano l’urgenza, l’importanza e la vastità dei problemi posti dalle possibili applicazioni della fisica nucleare, ma fra il 1939 e il 1940 si fecero grandi progressi nella fisica dei reattori: lo sviluppo dell’energia atomica fu compiuto da fisici europei immigrati da poco, in quanto in America lo sviluppo del radar aveva la precedenza su tutto e i fisici americani erano per la maggior parte impegnati con progetti che lo riguardavano. Dopo l’invasione della Polonia da parte di Hitler, il governo statunitense cercò di rafforzare la propria posizione militare e durante la primavera del 1941 si cominciarono a vedere segni di interesse per gli studi sulle applicazioni nucleari da parte di fisici americani importanti. La decisione di fare uno sforzo senza limiti fu annunciata il 6 dicembre 1941, alla vigilia dell’attacco di Pearl Harbor
Si formò il Manhattan District del Corpo del Genio Militare (MED), alla cui guida militare venne nominato il generale Leslie R. Groves, il 17 settembre 1942. Tra il generale e Fermi si creò un buon rapporto, per quanto provenissero da mondi completamente diversi: il militare poneva l’accento sulla segretezza del progetto e teneva lo sguardo allo scopo finale, lo scienziato aveva bisogno di comunicare per procedere negli studi e si lasciava coinvolgere nelle novità scientifiche che si rivelavano con il progresso del progetto. 
Il 2 dicembre 1942 venne realizzato un esperimento che segna una pietra miliare nello sviluppo dell’energia atomica: era però diventato chiaro che questi sforzi dovevano essere sensibilmente intensificati per poter raggiungere in tempo conclusioni utili e che sarebbe stato necessario disporre di un apposito laboratorio dedicato alla costruzione della bomba. Dopo un sopralluogo, venne scelta come sede per il laboratorio Los Alamos, sede di un collegio privato per ragazzi. Oppenheimer fu messo alla guida del progetto e vi si riunirono buona parte dei fisici nucleari più attivi e brillanti del mondo. L’età media del gruppo era assai bassa, circa 32 anni, solo alcuni avevano passato i quaranta. Fermi si stabilì a Los Alamos solo nell’agosto del 1944, lavorandovi a tempo pieno. Si trovava bene: funzionava come una specie di oracolo a cui ogni fisico con problemi difficili poteva rivolgersi e spesso ricevere valido aiuto. L’altro oracolo era Von Neumann, con il quale Fermi aveva un rapporto di amicizia e stima.
Il 16 luglio alle 5,30 ci fu l’esperimento Trinity, con il quale fu fatta esplodere la bomba. L’impresa ebbe successo. 
Alla fine della guerra, Fermi accettò la nomina a Chicago e lasciò Los Alamos il 31 dicembre1945. Fu in seguito membro del General Advisory Committee, dal gennaio del 1947 all’agosto del 1950, fu Presidente dell’American Physical Society, tornò in Europa per alcune conferenze e continuò l’attività di insegnante e di fisico sperimentale fino alla morte. 
Morì il 29 novembre 1954, poche settimane dopo l’inutile intervento chirurgico per l’asportazione di un cancro allo stomaco.
 
COMMENTO:
È un libro particolarmente ricco: pieno di riferimenti storici, pieno di aneddoti riguardanti la vita di Fermi e il lavoro dei fisici impegnati nel Progetto Manhattan, pieno di riferimenti scientifici per quanto riguarda le ricerche di quegli anni. 
La figura di Fermi, affascinante e accattivante, coinvolge il lettore, che vorrebbe conoscere le motivazioni che hanno spinto i fisici a partecipare al Progetto Manhattan. Ma persino Segrè, suo carissimo amico e collaboratore fin dagli inizi, non conosce i pensieri più intimi e personali di Fermi. Per certi aspetti, quindi, potremmo dire che la biografia si mantiene in superficie e d’altra parte è lo stesso Segrè che ci avvisa nella prefazione: “Nel suo libro Atomi in Famiglia la moglie Laura ha trattato altri aspetti della vita di Fermi e, ovviamente, i nostri punti di vista sono differenti: il suo è quello di una compagna devota e affezionata, il mio è quello di un discepolo amico e collega scienziato”.
Pubblicato in Libri
Etichettato sotto
Pagina 7 di 9

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy