Verifica di matematica, classe prima liceo scientifico.
Argomento: recupero del debito di matematica.
Durata: due ore.
Verifica di matematica, classe quarta liceo scientifico.
Argomento: numeri complessi e problema di trigonometria con discussione.
Durata: due ore.
Verifica di matematica, classe terza liceo scientifico.
Argomento: retta e piano cartesiano.
Durata: due ore.
Verifica di matematica, classe seconda liceo scientifico, recupero di settembre.
Argomento: Equazioni di secondo grado, equazioni e disequazioni irrazionali, geometria euclidea, applicazione dell'algebra alla geometria.
Durata: due ore.
Verifica di matematica, classe quarta liceo scientifico, recupero di settembre.
Argomento: goniometria, trigonometria, calcolo delle probabilità, calcolo combinatorio, geometria solida.
Durata: due ore.
Verifica di matematica, classe quarta liceo scientifico.
Argomento: trigonometria, problemi con discussione e sistemi parametrici misti; numeri complessi: forma trigonometrica, forma algebrica, forma esponenziale, soluzione di equazioni nel campo complesso.
Durata: 2 ore.
Verifica di matematica, classe quarta liceo scientifico.
Argomento: funzioni goniometriche.
Durata: un'ora e mezza.
TRAMA:
“L’attività di risoluzione di problemi è l’intima natura della matematica stessa”: nel libro di D’Amore troviamo a più riprese questa affermazione, che costituisce uno dei motivi per cui l’autore si è cimentato con questo scritto. E chi meglio di lui avrebbe potuto affrontare questo argomento? D’Amore “rappresenta una delle persone che negli anni ha contribuito maggiormente a far diventare una didattica disciplinare, la didattica della matematica, una vera e propria disciplina”. Addentrandosi in questa ricerca, l’autore si è ritrovato negli ambiti della pedagogia e della psicologia, dove si muove con un certo agio, considerata la laurea in pedagogia conseguita nel 1992. Il libro attuale, curato dalla casa editrice Digital Docet, è una rivisitazione di un testo edito nel 1993 da Franco Angeli, “Problemi, pedagogia e psicologia della matematica nell’attività di problem solving”: modificato e riveduto, con un arricchimento della bibliografia, ne conserva la struttura e le citazioni e affronta il tema della risoluzione dei problemi da più angolazioni. L’obiettivo di D’Amore è “di dare alle stampe un’opera che raccolga studi su questo delicato e interessantissimo problema didattico, ma che non sia solo teorico, bensì una fonte di ricche stimolazioni concrete per l’insegnante di scuola primaria, soprattutto, nella sua azione quotidiana”. In realtà, il testo è utilissimo anche per gli insegnanti della secondaria, visto che alcune delle considerazioni ivi presentate valgono per tutti i livelli scolastici. D’altra parte, con la promulgazione dei nuovi programmi per le scuole nel 1985, la matematica “assume finalmente un ruolo di rilievo non più solo strumentale ma educativo”, visto che “l’educazione matematica contribuisce alla formazione del pensiero nei suoi vari aspetti”. Come sostiene lo stesso Polya, matematico ungherese citato a più riprese nel testo, “risolvere problemi è un’impresa specifica dell’intelligenza e l’intelligenza è il dono specifico del genere umano” ecco perché si può considerare il risolvere problemi come “l’attività più caratteristica del genere umano”.
D’Amore esplora tutti gli ambiti: comincia con la motivazione, un problema psicologico, pedagogico, didattico, ma al tempo stesso affettivo, per incrementare la quale la famiglia ha il compito di apprezzare e sostenere la scuola. L’insegnante può lavorare sull’attivazione di comportamenti positivi, motivando e premiando, sollecitando, rendendo lo studente consapevole dei propri successi. D’altra parte, l’insegnante, soprattutto nella scuola secondaria, ha il difficile compito di “insegnare a pensare”, come ci ricorda Polya. È fondamentale che l’insegnante, non solo quello di matematica, aiuti lo studente nell’acquisizione di una conoscenza “ben strutturata” nelle singole discipline.
Non si può parlare di didattica della matematica senza far riferimento all’intuizione, il “centro nevralgico della risoluzione di un problema”. Non si possono insegnare le intuizioni, ma si può lavorare sulla conoscenza e sulle competenze: risolvere problemi, se fatto in autonomia e con piena consapevolezza, genera ulteriore competenza. Prima dell’intuizione, ogni studente ha bisogno di un tempo di latenza, durante il quale prepara il terreno per l’ispirazione, magari ricordando le proprie esperienze precedenti. In questo caso il ruolo dell’insegnante non è certo quello di intervenire in continuazione sollecitando o suggerendo: l’insegnante di matematica deve dimenticare la propria impazienza, conservando uno stato tranquillo, per “invitare implicitamente a ri-concentrarsi e a tornare al lavoro”.
Che dire poi del legame tra matematica e linguaggio? Viene ribadito a più riprese che l’educazione linguistica, in genere considerata dominio assoluto dell’ora di lettere, appartiene anche alla matematica, come si può capire nel momento in cui si chiede a uno studente di leggere con attenzione un problema o di fornire una motivazione del procedimento eseguito. La difficoltà di un problema, al di là della mancanza di intuizione, può palesarsi fin dall’inizio, con la difficoltà di comprensione del testo, con il blocco nel momento in cui si sta cercando la rappresentazione economicamente più vantaggiosa, per aiutare la propria immaginazione nella soluzione del problema.
Ripetere gli stessi problemi più e più volte ha senso solo nel momento in cui si vogliono dare degli automatismi (in tal caso, però, si fanno ripetere degli esercizi), ma non funziona in questo caso, visto che risolvere problemi significa “prendere decisioni”, valutare quali modelli applicare, scegliere un modello conveniente rispetto ad un altro. Ciò che realmente aiuta è la riflessione al termine dell’attività, per valutare la propria strategia, per acquisire nuove conoscenze, mentre l’insegnante sottolinea l’errore “con una bella dose di stupore, allegria, scherzo”.
COMMENTO:
Una lettura consigliatissima agli insegnanti di matematica! Durante la lettura, mi sono sentita guidata dall’autore, che, attraverso numerosi esempi e tantissimi aneddoti, ha stimolato la mia inventiva, facendo nascere in me numerose idee che conto di applicare in classe.
Verifica di matematica, classe quinta liceo scientifico.
Argomento: studio di funzione, problemi di massimo e minimo, quesiti dell'Esame di Stato Liceo Scientifico.
Verifica di recupero per assenti
Durata: due ore.
Verifica di matematica, classe quinta liceo scientifico.
Argomento: studio di funzione, problemi di massimo e minimo, quesiti dell'Esame di Stato Liceo Scientifico.
Durata: due ore.
© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy