Visualizza articoli per tag: biografia

Giovedì, 01 Agosto 2013 15:53

Enrico Fermi, fisico

TRAMA:
Come ci dice Segrè nella prefazione, per quanto Fermi sia vissuto in un’epoca piena di drammatici eventi storici e per quanto, a causa del suo lavoro, si sia trovato ad avere in essi una parte importante, la sua vita più intensa e avventurosa fu quella intellettuale della scoperta scientifica
Fermi nacque il 29 settembre 1901: imparò a leggere e scrivere precocemente e rivelò subito una memoria fenomenale. Si presentò al concorso di ammissione alla Scuola Normale di Pisa il 14 novembre 1918: il saggio aveva un livello e una maestria che avrebbe fatto onore a un esame di laurea universitaria, tanto che il prof. Pittarelli, dell’Università di Roma, disse a Fermi di non aver mai incontrato uno studente come lui e che senza dubbio egli era una persona straordinaria, che sarebbe andato molto lontano e sarebbe diventato uno scienziato importante.
Discusse la tesi il 7 luglio 1922 e gli venne conferita la laurea magna cum laude. In quegli anni, l’interesse dei fisici era focalizzato sulla relatività e Fermi cominciò con i primi lavori proprio nel campo della relatività generale. Studiò a Gottinga e, al rientro a Roma, ricevette, per intercessione di Corbino, l’incarico dell’insegnamento della matematica per i chimici. Lavorò a Leida, poi a Firenze, vinse il concorso di fisica matematica a Cagliari, ma in un ulteriore concorso del 1926, ottenne Roma: in questo modo aveva praticamente raggiunto lo zenith di una carriera universitaria.
In quegli anni, l’insegnamento della fisica era condotto come un servizio per i futuri ingegneri o come preparazione per gli insegnanti delle medie, ma Fermi riuscì a rivoluzionarne l’insegnamento e la gestione. La sede delle attività era il vecchio istituto di fisica dell’Università di Roma sito in via Panisperna 89a: le apparecchiature erano mediocri e l’officina meccanica antiquata, ma, mantenendo frequenti contatti con l’estero, Fermi risollevò lo stato della fisica italiana. 
Il 19 luglio del 1928 sposò Laura Capon, dalla quale ebbe due figli: Nella, 31 gennaio 1931 e Giulio, 16 febbraio 1936. 
Visitò gli Stati Uniti per la prima volta nel 1930: in Europa la situazione stava degenerando, con l’avvicinarsi del secondo conflitto mondiale e la Germania stava perdendo il proprio primato nella fisica, mentre l’America appariva come il paese del futuro, così Fermi cominciò a perfezionare la propria conoscenza dell’inglese e a pubblicare i lavori più importanti in inglese. 
Con la promulgazione delle leggi razziali, Fermi, dato che la moglie era ebrea, cominciò a prendere in considerazione l’idea di un trasferimento negli Stati Uniti e scelse la Columbia University di New York. Il 10 novembre 1938 ricevette l’annuncio telefonico del conferimento del premio Nobel e decise quindi di proseguire per gli Stati Uniti partendo da Stoccolma, dopo aver ritirato il premio.
Alla Columbia, Fermi trovò amici personali e colleghi: ricominciò a insegnare con energia, pur lasciando il primato alla ricerca. 
Gli americani ancora non capivano l’urgenza, l’importanza e la vastità dei problemi posti dalle possibili applicazioni della fisica nucleare, ma fra il 1939 e il 1940 si fecero grandi progressi nella fisica dei reattori: lo sviluppo dell’energia atomica fu compiuto da fisici europei immigrati da poco, in quanto in America lo sviluppo del radar aveva la precedenza su tutto e i fisici americani erano per la maggior parte impegnati con progetti che lo riguardavano. Dopo l’invasione della Polonia da parte di Hitler, il governo statunitense cercò di rafforzare la propria posizione militare e durante la primavera del 1941 si cominciarono a vedere segni di interesse per gli studi sulle applicazioni nucleari da parte di fisici americani importanti. La decisione di fare uno sforzo senza limiti fu annunciata il 6 dicembre 1941, alla vigilia dell’attacco di Pearl Harbor
Si formò il Manhattan District del Corpo del Genio Militare (MED), alla cui guida militare venne nominato il generale Leslie R. Groves, il 17 settembre 1942. Tra il generale e Fermi si creò un buon rapporto, per quanto provenissero da mondi completamente diversi: il militare poneva l’accento sulla segretezza del progetto e teneva lo sguardo allo scopo finale, lo scienziato aveva bisogno di comunicare per procedere negli studi e si lasciava coinvolgere nelle novità scientifiche che si rivelavano con il progresso del progetto. 
Il 2 dicembre 1942 venne realizzato un esperimento che segna una pietra miliare nello sviluppo dell’energia atomica: era però diventato chiaro che questi sforzi dovevano essere sensibilmente intensificati per poter raggiungere in tempo conclusioni utili e che sarebbe stato necessario disporre di un apposito laboratorio dedicato alla costruzione della bomba. Dopo un sopralluogo, venne scelta come sede per il laboratorio Los Alamos, sede di un collegio privato per ragazzi. Oppenheimer fu messo alla guida del progetto e vi si riunirono buona parte dei fisici nucleari più attivi e brillanti del mondo. L’età media del gruppo era assai bassa, circa 32 anni, solo alcuni avevano passato i quaranta. Fermi si stabilì a Los Alamos solo nell’agosto del 1944, lavorandovi a tempo pieno. Si trovava bene: funzionava come una specie di oracolo a cui ogni fisico con problemi difficili poteva rivolgersi e spesso ricevere valido aiuto. L’altro oracolo era Von Neumann, con il quale Fermi aveva un rapporto di amicizia e stima.
Il 16 luglio alle 5,30 ci fu l’esperimento Trinity, con il quale fu fatta esplodere la bomba. L’impresa ebbe successo. 
Alla fine della guerra, Fermi accettò la nomina a Chicago e lasciò Los Alamos il 31 dicembre1945. Fu in seguito membro del General Advisory Committee, dal gennaio del 1947 all’agosto del 1950, fu Presidente dell’American Physical Society, tornò in Europa per alcune conferenze e continuò l’attività di insegnante e di fisico sperimentale fino alla morte. 
Morì il 29 novembre 1954, poche settimane dopo l’inutile intervento chirurgico per l’asportazione di un cancro allo stomaco.
 
COMMENTO:
È un libro particolarmente ricco: pieno di riferimenti storici, pieno di aneddoti riguardanti la vita di Fermi e il lavoro dei fisici impegnati nel Progetto Manhattan, pieno di riferimenti scientifici per quanto riguarda le ricerche di quegli anni. 
La figura di Fermi, affascinante e accattivante, coinvolge il lettore, che vorrebbe conoscere le motivazioni che hanno spinto i fisici a partecipare al Progetto Manhattan. Ma persino Segrè, suo carissimo amico e collaboratore fin dagli inizi, non conosce i pensieri più intimi e personali di Fermi. Per certi aspetti, quindi, potremmo dire che la biografia si mantiene in superficie e d’altra parte è lo stesso Segrè che ci avvisa nella prefazione: “Nel suo libro Atomi in Famiglia la moglie Laura ha trattato altri aspetti della vita di Fermi e, ovviamente, i nostri punti di vista sono differenti: il suo è quello di una compagna devota e affezionata, il mio è quello di un discepolo amico e collega scienziato”.
Pubblicato in Libri
Etichettato sotto
Giovedì, 01 Agosto 2013 15:50

Sophie Germain una matematica dimenticata

TRAMA:
Sophie Germain nasce il primo aprile del 1776. A tredici anni scopre il suo interesse per la matematica, leggendo la “Storia della matematica” di Jean-Étienne Montucla, trovato nella biblioteca paterna. Leggendo l’episodio di Archimede, arriva a concludere che se l’analisi di un problema geometrico poteva essere tanto interessante da anteporsi alla preoccupazione per la sopravvivenza, quello della matematica doveva essere veramente un mondo affascinante
Studia da autodidatta, contravvenendo gli ordini della famiglia, contraria a questa sua passione, ma dal 1794 può frequentare l’École Polytechnique, assumendo l’identità di un ex studente, tale Antoine-Auguste Le Blanc. Tra gli insegnanti, Lagrange restò colpito dall’ingegnosità di Le Blanc e chiese un incontro, durante il quale la Germain fu costretta a rivelare la propria identità. In Lagrange Sophie trovò un amico e finalmente un insegnante. Lagrange la mise a conoscenza dell’esistenza del problema dell’Ultimo Teorema di Fermat e, arrivata a un risultato importante, Sophie osò scrivere a C.F. Gauss, firmandosi con il suo pseudonimo. La lettera di Sophie suscitò in Gauss viva impressione e stupore per la profondità dei risultati da lei ottenuti
Nel 1806, a seguito dell’invasione della Prussia da parte di Napoleone, Sophie intervenne presso un generale, amico del padre, perché facesse in modo che Gauss non corresse pericoli. Fu così che Gauss venne a conoscenza della vera identità della Germain: “… quando una persona del suo sesso che, secondo i nostri costumi e pregiudizi, deve incontrare difficoltà infinitamente superiori a quelle degli uomini nel familiarizzare con queste scabrose ricerche, riesce nondimeno a sormontare gli ostacoli ed a penetrare le parti più oscure della materia, allora senza dubbio ella deve possedere il coraggio più elevato, talenti straordinari e un genio superiore.
A seguito dei suoi lavori, ricevette una medaglia dall’Institut de France e fu la prima donna ammessa a seguire le lezioni dell’Accademia delle Scienze. Ricevette un premio di 3000 franchi da Napoleone, ma non si presentò a ritirarlo, a causa della sua timidezza. 
Grande fu il suo lavoro: la sua influenza sulla comunità scientifica era tale da far eleggere Fourier come segretario perpetuo all’Accademia delle Scienze e fu l’unica a rendersi conto delle capacità di Galois.
Proprio a seguito delle sue abilità, Gauss chiese e ottenne che l’Università di Gottinga le conferisse una laurea “honoris causa”, ma ella morì, il 26 giugno del 1831, prima che le venisse conferita.
 
Le lettere presenti nel testo sono in ordine cronologico, vanno dal 1802 al 1831. Sono ventiquattro lettere, ma l’ultima è di Sophie Germain e indirizzata a Guglielmo Libri. Una lettera è del Libraio Bernard alla madre, ma le altre sono tutte per lei: tra i matematici Cauchy (due), Delambre (due), Fourier (sei), Gauss (una), Lagrange (una), Legendre (quattro), Navier (una), Poisson, nei confronti del quale non nutriva una buona opinione (una). Poi c’è una lettera di Choron, teorico della musica, una di D’Ansse de Villoison, ellenista, una di Tessier, medico e una di Libri, storico.
Seguono alcune citazioni della Germain e alcune indicazioni biografiche degli autori delle lettere.
 
COMMENTO:
Il libro costituisce un semplice assaggio, che lascia, però, la bocca un po’ asciutta. Troppo scarne sono le notizie di Sophie Germain: il libro basta per intuirne la grandezza e l’originalità, ma non per gustarne fino in fondo l’impatto che essa ha avuto sui suoi contemporanei. Per quanto riguarda le lettere, manca un filo conduttore che faccia capire meglio il loro significato e che le possa collocare meglio nella vita della Germain. 
Rispetto alla biografia di Galois, il lavoro sulla Germain appare quindi scarno, povero. Si sarebbe potuto scrivere molto di più…
Pubblicato in Libri
Etichettato sotto
Giovedì, 01 Agosto 2013 15:48

Autobiografia di un fisico

TRAMA:
Emilio Segrè nasce il 30 gennaio del 1905 (anche se la data ufficiale è il primo febbraio). Ultimo di tre figli, trascorre l’infanzia a Tivoli, fino al 1917, quando si trasferisce a Roma. Gli zii paterni sono ben noti negli ambienti culturali italiani, mentre il padre ha come attività principale la gestione delle cartiere. Dopo aver frequentato il liceo classico e aver incontrato professori dei quali aveva poca stima, si iscrive al biennio di matematica e fisica propedeutico a ingegneria: L’idea di una carriera di fisico mi avrebbe allettato molto, ma sembrava troppo aleatoria.
Al terzo anno di ingegneria, annoiato da una scuola nella quale non si trovava bene, conosce Franco Rasetti, assistente di Corbino e intimo di Fermi. Ed è proprio a Fermi che Rasetti lo presenta. I due erano in cerca di studenti da allevare, io ero in cerca di professori e ci combinammo bene. Decide quindi di compiere il passaggio a fisica, anche se la famiglia accolse con freddezza questa sua scelta. 
Laureatosi nel luglio del 1928, frequenta la Scuola Ufficiali di Spoleto durante il servizio militare.
Nel 1931 comincia a viaggiare per l’Europa, incontrando fisici importanti. 
Conosce la moglie agli inizi del 1934: Elfriede Spiro, fuggita dalla Germania l’anno prima, è ebrea come Segrè. Si sposano il 2 febbraio del 1936, in occasione del suo trasferimento a Palermo, dopo aver vinto la cattedra di Michele La Rosa, morto prematuramente. Segrè aveva l’obiettivo di ristabilire la fisica, risistemare l’insegnamento e dare nuovi input alla ricerca. 
Nell’estate del 1938, Segrè è a Berkeley per compiere delle ricerche. Sbarcato a New York il 13 luglio del 1938, si fa raggiungere dalla moglie tre mesi dopo, a causa del clima sempre più oppressivo esistente in Italia. Nell’estate del 1942 si radunò un gruppo teorico diretto da Oppenheimer, per iniziare il progetto di una bomba nucleare. Quando gli viene proposto di partecipare al progetto di Los Alamos, Segrè non ha dubbi: Sentivo il dovere di aiutare un paese che mi aveva accolto quando mi trovavo in una situazione difficile. A parte questo, l’idea di poter contribuire alla distruzione di Hitler e delle sue infamie e alla conclusione vittoriosa della guerra mi allettava grandemente.
Dopo l’esperimento Trinity del luglio 1945 e dopo Hiroshima, Segrè torna a Berkeley, dove ottiene una buona posizione universitaria. Nel 1947 torna in Italia: deve sistemare alcune questioni d’affari, dopo la morte dei genitori. 
La morte di Fermi per un cancro allo stomaco, il 29 novembre 1954, lascia Segrè profondamente scosso. 
Continua nel frattempo la sua corsa al Nobel, per il quale lo stesso Fermi l’aveva proposto un paio di volte. Il Premio Nobel arriva nel 1959: Mi è rimasto sempre un profondo rammarico che né i miei genitori, né lo zio Claudio, né Corbino, né Fermi abbiano potuto vedere il Pippi laureato.
Il 15 ottobre 1970 muore la moglie. Segrè contrae un secondo matrimonio nel 1972 con Rosa Mines e successivamente viene messo a riposo dall’attività di Berkeley per raggiunti limiti d’età.
Segrè muore il 22 aprile del 1989: La vita che era cominciata a Tivoli ottantaquattro anni prima era giunta al termine.
 
COMMENTO:
Libro intenso e coinvolgente. Le vicende personali di Segrè e i suoi studi sono strettamente intrecciati con le vicende storiche del Novecento: l’epoca del fascismo, la seconda guerra mondiale, la bomba atomica, il dopoguerra, non sono solo uno sfondo, perché determinano le scelte di vita dell’uomo, fanno di lui ciò che è stato. I giudizi di Segrè riguardo le persone che hanno accompagnato la sua vita sono schietti e sinceri: vi si legge tutta la sua stima per Fermi e Corbino, ma non mancano critiche ai fratelli e considerazioni molto personali che non si fa scrupolo di pubblicare.
Pubblicato in Libri
Etichettato sotto
Giovedì, 01 Agosto 2013 07:56

Professione matematico

TRAMA:
Dodici interviste ad altrettanti matematici italiani. La prima cosa sorprendente è che la maggior parte degli intervistati non ha scoperto molto presto la propria passione per la matematica, alcuni sono addirittura laureati in fisica. È unanime l’idea che il computer non abbia sostanzialmente cambiato il modo di fare ricerca. Il problema dei cervelli in fuga, invece, è in realtà segnalato come mancanza di ricchezza per l’Italia: i continui viaggi indicano un importante e vitale scambio di idee, purtroppo però nessuno straniero si sente invogliato a venire in Italia e questa è la vera povertà. Unanime è la critica nei confronti della riforma universitaria, unanime l’elenco delle qualità necessarie per diventare matematici eccellenti: l’interesse, la fantasia, la disciplina, lo studio, l’importanza delle buone guide… ma attualmente sembra tutto più difficile, visto che lo studente medio mostra una difficoltà di concentrazione sempre maggiore e mancano i nessi logici, la capacità di ragionare.
I matematici intervistati sono:
GIUSEPPE DA PRATO: laureato in fisica, ritiene che la stessa sia un utile strumento per capire i problemi concreti da cui nascono certe questioni di carattere matematico.
CORRADO DE CONCINI: presidente dell’Indam, agenzia di finanziamento della ricerca matematica, ritiene sia importante comunicare il fascino della matematica.
MICHELE EMMER: figlio di un regista, si occupa di superfici minime, ma anche di cinema.
FRANCO FAGNOLA: si occupa dello sviluppo del sesto problema di Hilbert.
ENRICO GIUSTI: ha lavorato con De Giorgi e Bombieri, ma oggi si occupa molto di divulgazione matematica. A lui si deve la fondazione del primo museo dedicato interamente alla matematica: i Giardini di Archimede.
GIORGIO ISRAEL: contesta la matematizzazione della sociologia e dell’economia, perché solo in fisica il processo è ormai collaudato e in biologia sta già dimostrando la sua efficacia. Esiste un limite nella rappresentazione matematica dei fenomeni.
PIERGIORGIO ODIFREDDI: logico, si occupa da alcuni anni della divulgazione della matematica. Esprime la sua preoccupazione per la crescente superficialità della società.
MARIO PRIMICERIO: matematico applicato, si è avvicinato alla scienza grazie alla propria curiosità. Parla diffusamente delle possibili collaborazioni, da lui incentivate, fra università e industria.
ALFIO QUARTERONI: espone molti aspetti curiosi delle applicazioni matematiche, come ad esempio il lavoro per il team Alinghi e sottolinea l’importanza del mettersi in discussione e del cambiare ogni tanto la propria attività, per mettersi alla prova.
GIUSEPPE TOMASSINI: si occupa di geometria superiore, ma in realtà la distinzione tra i vari ambiti non ha più molta importanza: è necessario trattare i problemi nella prospettiva più ampia possibile. 
CARLO TRAVERSO: parla non solo dell’algebra computazionale, di cosa sia e delle sue applicazioni, ma anche delle competenze richieste per essere ammessi a un corso di dottorato.
EDOARDO VESENTINI: sottolinea che fare ricerca matematica significa “rompersi la testa” su un problema e paragona la matematica a una droga.
 
COMMENTO:
Dalle parole degli studiosi di matematica emerge una grande passione per l’oggetto del loro studio e forse è proprio questo che rende la lettura del libro così piacevole. Ma questo non è certamente l’unico lato positivo in un libro che si legge d’un fiato. 
Le risposte inerenti le prospettive di lavoro per un matematico aprono davanti ai nostri occhi l’immagine di un mondo sconosciuto, poco noto anche a chi ha studiato matematica. Forse perché, come dice Enrico Giusti: la matematica “è un po’ come il nostro scheletro: da fuori non si vede, ma guai se non ci fosse!”.
Pubblicato in Libri
Etichettato sotto
Giovedì, 01 Agosto 2013 07:48

Le idee geniali

SCANSIONE DEI CAPITOLI E PERSONAGGI TRATTATI:
 
  1. La genialità alle origini della civiltà: Archimede, Eratostene, Pitagora, Euclide
  2. Genii epocali: Galileo Galilei, Isaac Newton, Albert Einstein
  3. Genii altamente professionali: Carl Friedrich Gauss, Michael Faraday, Amedeo Avogadro, Jean Perrin, I Curie
  4. Genii alle macchine utili: Sadi Carnot e gli altri
  5. Genialità e intuizione: i semplificatori: Jean Baptiste Fourier, Idee geniali di incerta paternità, Genialità nella strumentazione, Evangelista Torricelli, Pierre Vernier, James Watt, August Toepler
  6. Al di là dei classici: Vito Volterra, Enrico Fermi, Max Born, Richard Feynman, John Archibald Wheeler
 
COMMENTO:
Libro interessante e scorrevole. I singoli personaggi sono presentati con gli aneddoti che li caratterizzano, ma anche e soprattutto con le scoperte geniali che li hanno resi indimenticabili. 
È possibile approfondire i singoli temi attraverso alcune pagine nelle quali viene spiegata più in dettaglio la scoperta in questione, oppure scegliere di leggere il libro anche a livello meno impegnativo, limitandosi alle storie delle vite dei numerosi chimici, fisici, matematici, biologi che hanno reso la nostra epoca quello che è.
Pubblicato in Libri
Etichettato sotto
Giovedì, 01 Agosto 2013 06:58

Matematica sulle barricate

TRAMA:
Il 25 ottobre 1811, nasce Evariste Galois. È importante specificare che, al tempo della sua nascita, domina in Francia Napoleone Bonaparte: la vita e la morte di Evariste Galois saranno strettamente connesse alle vicende storiche della Francia.
Il 3 maggio 1814, Luigi XVIII torna a Parigi e, dopo la parentesi dei 100 giorni, l’8 luglio si attua la Restaurazione Borbonica; nello stesso periodo, Nicholas-Gabriel, padre di Evariste, diventa sindaco della cittadina di Bourg-la-Reine. È proprio durante il periodo del Terrore Bianco, con il massacro di centinaia di bonapartisti, che ha luogo l’assassinio dell’unico erede al trono. Il 16 settembre muore Luigi XVIII e gli succede Carlo X.
Nell’estate del 1826, il liceo Louis-le-Grand, che Evariste ha cominciato a frequentare nel 1823, ha un nuovo direttore, Laborie, che ritiene Galois troppo giovane per frequentare già la classe di Rhétorique: dopo una lunga controversia con la famiglia, a gennaio Evariste viene retrocesso. Per assurdo, è proprio grazie a questa retrocessione che Evariste scopre il suo amore per la matematica. Nel giugno del 1828 sostiene il primo esame per l’ammissione all’Ecole Polytechnique, ma viene bocciato. La primavera del 1829 è il periodo più felice della vita di Galois: le sue idee in matematica sono sempre più chiare e scrive due memorie, che grazie all’intervento del professor Richard, nel maggio dello stesso anno saranno presentate a Cauchy.
Il 2 luglio Nicholas-Gabriel si suicida, a seguito della campagna di diffamazione promossa dal parroco del paese e da un assessore, che ritenevano il padre di Evariste troppo liberale. Nell’agosto dello stesso anno, precipita anche la situazione sul fronte nazionale: Carlo X opera un colpo di stato.
A seguito delle difficoltà economiche sopraggiunte dopo la morte del padre e della seconda bocciatura all’esame di ammissione all’Ecole Polytechnique, Galois sostiene gli esami per essere ammesso all’Ecole Préparatoire, per diventare insegnante: il 20 febbraio 1830 firma il documento con il quale si impegna al servizio dell’istruzione pubblica per i successivi dieci anni.
In maggio, partecipa al Grand Prix de Mathématiques indetto dall’Accademia, ma Fourier, che si era portato a casa il suo manoscritto, muore il 16 maggio: il manoscritto non viene più ritrovato e Galois viene escluso dal premio. Nello stesso periodo compaiono tre sue note sul Bullettin de Férrussac, rivista che accoglieva solo articoli di scrittori noti.
Nel corso delle Tre Gloriose (fine luglio), Guigniault, direttore dell’Ecole Préparatoire, vieta agli studenti di lasciare la scuola per partecipare alla rivolta, ma poi mette i propri studenti a disposizione del Governo Provvisorio, quando l’opposizione destituisce Carlo X. Il 9 agosto, Luigi Filippo I, duca di Orléans, sale al potere. Nell’estate del 1830, Galois entra a far parte della Societé des Amis du Peuple e il contrasto con Giugniault, dovuto all’atteggiamento di quest’ultimo durante le Tre Gloriose, porta Evariste, in dicembre, all’espulsione dalla scuola. Si arruola così nella Guardia Nazionale, proprio nel momento in cui Luigi Filippo scioglie la Guardia Nazionale: diciannove artiglieri si ribellano e vengono arrestati. 
Il 16 gennaio del 1831, Galois presenta una nuova introduzione per la propria memoria all’Accademia, ma nemmeno questa ha un seguito. Intanto avviene il processo dei diciannove, che si conclude il 16 aprile con un verdetto di assoluzione. Il 9 maggio la Societé des Amis du Peuple organizza un banchetto, al quale partecipa anche Galois, nel corso del quale egli stesso fa un brindisi, “A Luigi Filippo!”, mentre con una mano alza un bicchiere colmo di vino e con l’altra brandisce, minacciosamente, un coltello a serramanico. Verrà incarcerato per questo e, al processo del 15 giugno, si perviene a un verdetto di assoluzione, grazie alla tesi della difesa, secondo la quale il banchetto era privato.
Successivamente, Galois rende pubblica la trascuratezza dell’Accademia e il 4 luglio, Lacroix e Poisson, incentivati a visionare le sue memorie, esprimono un giudizio negativo. Il 14 luglio, durante i festeggiamenti per l’anniversario della presa della Bastiglia, Galois viene arrestato per porto illegale di uniforme e di armi proibite: resterà nel carcere di Sainte-Pélagie fino al 29 aprile del 1832. Durante la carcerazione, scoppia un’epidemia di colera e, per questo motivo, i più cagionevoli di salute e i più giovani ospiti del carcere, vengono trasferiti in una casa di salute: tra di essi c’è Galois, che, grazie a questo trasferimento, conosce Stéphanie, della quale si innamora. Ma non è corrisposto.
Ai primi di maggio del 1832, la duchessa di Berry rientra in Francia: è la madre del legittimo erede al trono. La Societé des Amis du Peuple si riunisce il 17 maggio: sarebbe bene scatenare una rivolta per far sentire Luigi Filippo I tra due fuochi e ottenere maggiore libertà. Servirebbe un cadavere per scatenare la rivolta. Galois offre il proprio corpo: organizza un duello, prepara delle lettere, perché questo duello risulti credibile e il 30 maggio viene ferito. Muore di peritonite il 31 maggio. Il primo giugno, la Societé si riunisce per prendere accordi per organizzare il funerale di Galois, ma la morte del generale Lamarque, appena successa, viene preferita come occasione per scatenare la rivolta. La morte di Galois è stata inutile. 
La memoria di Galois verrà pubblicata solo quattordici anni dopo la sua morte e costituisce il fondamento dell’algebra moderna.
 
COMMENTO:
Molto interessante questa teoria sulla morte di Galois. Inquadrato molto bene storicamente, il libro può appassionare anche gli storici, senza che abbiano alcuna nozione matematica. La sfortunata vicenda umana di Galois non può che coinvolgere anche a livello emotivo.
Pubblicato in Libri
Etichettato sotto
Mercoledì, 31 Luglio 2013 21:14

L'uomo che vide l'infinito

TRAMA:
Ramanujan fu un eccentrico personaggio: nato in India nel 1887, si innamorò della matematica nel 1903 e, irretito dalla matematica pura, perse interesse per tutto il resto: gli venne così tolta la borsa di studio che aveva ottenuto.
La sua famiglia era ai limiti della miseria e di tanto in tanto Ramanujan pativa anche la fame. Cercò di arrangiarsi con qualche ripetizione, ma non era abile come insegnante. Cominciò a riportare i suoi appunti in alcuni quaderni che dimostrano il suo sviluppo fuori dalle convenzioni. I genitori lo sopportarono a lungo, ma alla fine si irritarono e, forse verso la fine del 1908, gli organizzarono un matrimonio combinato. 
Il 1911 fu un anno positivo e promettente: ottenne un incarico che gli permetteva di mantenersi economicamente e di dedicare tutto il tempo che voleva alla matematica. Le serie furono il primo amore di Ramanujan e furono l’argomento del suo primo articolo pubblicato sul Journal. In questo, come in tutta la sua opera, Ramanujan trovò rapporti tra cose che sembravano senza rapporto. Le dimostrazioni che dava erano abbozzate o incomplete, ma con questa pubblicazione cominciò a farsi notare. 
Gli eventi cospirarono per dirgli che sarebbe stato ascoltato con maggiore cognizione di causa dai matematici europei. Scrisse a Baker e a Hobson, ma entrambi gli risposero negativamente. Il 16 gennaio 1913, Ramanujan scrisse a un altro matematico di Cambridge, G. H. Hardy. E Hardy gli prestò ascolto. Fu la stranezza dei teoremi di Ramanujan a colpire Hardy, non la loro genialità. La lettera di risposta di Hardy era prodiga di incoraggiamenti e la carriera di Ramanujan si avviò velocemente, tanto che ricevette una borsa di studio dal Presidency College di Madras che lo rendeva libero di dedicarsi alla matematica: non aveva nient’altro da fare se non presentare un resoconto dei progressi fatti ogni tre mesi.
Con Hardy continuò il contatto epistolare, ma verso la metà di marzo la situazione rasentò la lite vera e propria. E Hardy non rispose per mesi. Nonostante questo, egli fece di tutto per portare Ramanujan in Inghilterra. Ma Ramanujan proveniva da una famiglia indù profondamente ortodossa: recarsi in Europa o in America costituiva una forma di contaminazione. Quando alla fine partì, Ramanujan attribuì la sua decisione all’ispirazione divina.
Appena arrivato in Inghilterra, Ramanujan era produttivo, lavorava sodo, era felice. Come Hardy poté verificare, alcuni suoi risultati erano sbagliati. Alcuni non erano importanti come a Ramanujan piaceva credere. Alcuni erano autonome riscoperte di ciò che i matematici occidentali avevano già scoperto anni prima. Molti, però, forse un terzo, come calcolò Hardy, o forse due terzi, come avrebbero calcolato i matematici più di recente, erano novità da mozzare il fiato.
Era stata una vera fortuna per Ramanujan finire tra le mani di Hardy, che spinse Ramanujan in accelerazione senza mettere la museruola alla sua creatività o spegnere le fiamme del suo entusiasmo. Ramanujan non aveva doveri ufficiali nell’ambito del college. Poteva immergersi nella matematica senza preoccuparsi di esigenze finanziarie, né sue né della sua famiglia. 
Probabilmente dagli inizi del 1916, fu preda di una forte tensione nervosa. Non c’era solo la guerra: c’erano momenti in cui le piccole cose famigliari della vita dell’India meridionale gli mancavano terribilmente e, tra gli inglesi, non poteva non sentirsi un estraneo, perciò si chiuse in se stesso.
Per molti aspetti Hardy era il migliore e più fedele amico che Ramanujan avesse mai avuto. Era premuroso, leale e gentile con lui, ma non erano intimi. Ramanujan viveva i suoi problemi in solitudine e conduceva una vita irregolare, non dormiva e non mangiava, tanto che finì con il minare la sua salute. Sotto la guida di Hardy era andato bene, ma non era felice. Aveva impiegato tutte le sue energie nella matematica. Perciò si spezzò. Tanto che arrivò a tentare il suicidio.
Forse per paura di arrivare tardi, Hardy lavorò per ottenere la sua nomina alla Royal Society e subito dopo ottenne l’elezione al Trinity: i riconoscimenti che gli erano stati accordati avevano risollevato lo spirito di Ramanujan.
Tornò in India nell’aprile del 1919, ma tornava in uno stato di salute alquanto precario e si ritrovò nella fossa dei serpenti della sua famiglia, una bolgia che ribolliva di risentimento. 
Per tutto l’anno trascorso in India, Ramanujan lavorò a nuove scoperte matematiche: le sue capacità intellettive si fecero in proporzione più acute e brillanti. Quattro giorni prima di morire stava ancora scarabocchiando. 
Per quanto riguarda la comunità matematica, Ramanujan continua a vivere: “Scoprì così tanto, eppure lasciò agli altri ancora tanto di più da scoprire del suo giardino” disse Dyson. 
Hardy morì nel 1947. E ancora a distanza di vent’anni, Ramanujan era rimasto parte di lui, un faro splendente, luminoso nella sua memoria. “Un uomo la cui carriera sembra piena di paradossi e contraddizioni, che sfida quasi tutti i canoni secondo i quali siamo abituati a giudicarci l’un l’altro e sul quale tutti probabilmente concorderemmo in un unico giudizio: che fu per certi versi un grandissimo matematico.”
 
COMMENTO:
Un libro interessante. Semplice anche per chi conosce poca matematica, visto che si tratta di una biografia. L’autore è riuscito, attraverso metafore e semplici esempi, a rendere l’idea del peso delle scoperte di Ramanujan. Molto scorrevole.
Pubblicato in Libri
Etichettato sotto
Mercoledì, 31 Luglio 2013 20:17

L'uomo che amava solo i numeri

TRAMA:
Erdős nacque a Budapest il 26 marzo 1913. Figlio di due insegnanti di matematica delle superiori, divenne un asso con i numeri quando ancora faceva i primi passi. Lasciò l’Ungheria per la prima volta nel 1934, sotto la dittatura di Horthy e andò in Inghilterra per una borsa post-laurea: i quattro anni passati a Manchester furono, per quanto riguarda la matematica, un bel periodo, nonostante la grande nostalgia. 
Nel 1943, Ulam invitò Erdős ad unirsi allo sforzo bellico a Los Alamos, dove stavano costruendo armi atomiche. Erdős scrisse per dare la propria disponibilità, ma, avendo voluto sottolineare che c’era la possibilità che dopo la guerra tornasse a Budapest, non venne accettato. Gli piaceva provocare le autorità. 
Ottenne poi un part-time alla Purdue University: in questa occasione, i suoi colleghi scoprirono che aveva una profonda cultura anche al di fuori dell’ambito matematico. 
Nel 1948, per la prima volta dopo dieci anni, tornò a Budapest. Per Erdős fu un viaggio dolce e amaro allo stesso tempo, ma dovette ripartire in tutta fretta, quando Stalin cominciò a chiudere le frontiere. Fece la spola fra Stati Uniti e Inghilterra, ma quando, nel 1954, venne invitato ad un convegno di matematica ad Amsterdam, gli Stati Uniti non gli diedero il permesso di rientro. A quanto pare, le autorità statunitensi temevano che le lettere a un teorico dei numeri cinese, piene di impenetrabili simboli matematici, potessero essere messaggi cifrati. 
Erdős non era uomo da accettare che gli ponessero vincoli, perciò partì per Amsterdam. Sempre ottimista, si aspettava che i paesi dell’Europa occidentale sarebbero stati più gentili degli Stati Uniti e pensava che lo avrebbero lasciato viaggiare senza problemi. Ma trovò ostacoli anche in Europa.
Nel 1963, finalmente gli fu concesso di rientrare negli Stati Uniti e l’anno successivo la madre, seppur ottantaquattrenne, cominciò a viaggiare con lui. Viaggiare non le piaceva, ma voleva stare con lui: non faceva che preoccuparsi della salute del figlio e anche della sua sicurezza fisica. La madre morì nel 1971: subito dopo Erdős cominciò a prendere un sacco di pillole, prima antidepressivi e poi anfetamine. S’immerse nel lavoro per diciannove ore al giorno, sfornando saggi su saggi, destinati a mutare il corso della storia della matematica. A sua madre continuò a pensare per tutto il resto della sua vita.
L’aspetto stanco e malato di Erdős ingannò i suoi amici a lungo. Negli anni Quaranta, i suoi colleghi pensavano che la sua salute fosse così fragile che non sarebbe vissuto a lungo. Aveva un’aria debole e sembrava sempre malato. Solo negli ultimi dieci anni di vita diversi problemi di salute fecero perdere a Erdős un po’ della sua energia, anche se continuò a lavorare a un ritmo che, paragonato a quello degli altri matematici, era frenetico.
Morì il 20 settembre 1996. Il servizio funebre ufficiale fu uno dei più imponenti cui si fosse mai assistito in Ungheria. Vi presero parte oltre cinquecento persone, come se fossero stati i funerali di un capo di stato. 
Nel marzo del 1997, all’Università di Memphis, ci fu la 919^ Assemblea dell’American Mathematical Society. Questo convegno coincideva con il compleanno di Erdős e l’organizzatore invitò tutti a fermarsi a casa sua per una “festa dei sopravvissuti”. I più di 200 matematici convenuti si scambiarono aneddoti su Erdős. Ne emerse il profilo di un uomo che era sì un disastro nelle cose materiali, ma sempre gentile con la gente, pieno di attenzioni verso i bisognosi.
Prima di morire, Erdős riuscì a pensare a più problemi di qualunque altro matematico della storia: scrisse da solo o in collaborazione 1475 saggi accademici, collaborò con più persone di qualunque altro matematico della storia (ben 485) dimostrando che la matematica non è soltanto un gioco da ragazzi. Strutturò la sua vita per massimizzare il tempo da dedicare alla matematica. Si muoveva per quattro continenti a un ritmo frenetico, spostandosi da un’università o un centro di ricerca all’altro. 
Nel campo della matematica, lo stile di Erdős era di grande curiosità, uno stile che applicava a qualunque altra cosa cui si trovasse di fronte. Parte del suo successo di matematico veniva dalla tendenza a porre domande di base, a ponderare criticamente quanto altri davano per stabilito.
Erdős rinunciò al piacere fisico e ai beni materiali per una vita consacrata alla scoperta della verità matematica: per lui la matematica era un’ancora di salvezza in un mondo che egli, anche se credeva nella bontà e nell’innocenza delle persone comuni, considerava crudele e senza cuore. 
I numeri primi erano gli amici intimi di Erdős e il suo acume in materia di primi era tale che, a sentire di un nuovo problema al riguardo, spesso non tardava a superare chi aveva passato molto più tempo a pensarci. La più grande vittoria sui numeri primi Erdős la ottenne nel 1949, anche se non amava parlarne, perché fu anch’essa una vittoria inquinata da polemiche. Gauss aveva proposto una formula che descriveva la distribuzione statistica dei numeri primi ed essa era stata dimostrata nel 1896. Ma nel 1949 Erdős e Selberg ne diedero una dimostrazione elementare: a causa di un malinteso, si scatenò una battaglia per la priorità. Le battaglie per la priorità non sono rare in matematica, ma nel condividere idee matematiche con dei colleghi, Erdős era di una generosità rara. Il suo obiettivo, infatti, anche a detta dei suoi colleghi, era che qualcuno dimostrasse qualcosa, con lui o senza di lui: in questo modo, contribuì enormemente alla matematica. 
Erdős rimase sostanzialmente fedele ai campi della matematica in cui eccellono i bambini prodigio, il che non significa che i suoi interessi matematici fossero angusti: ha aperto interi nuovi campi della matematica. La sua specialità consisteva nel venir fuori con soluzioni brevi e brillanti. Era l’esperto della soluzione di problemi: finché fossero rimasti problemi da risolvere, non avrebbe mai abbandonato la lotta. Il suo stile consisteva nel lavorare su molti problemi contemporaneamente con colleghi sparsi ai quattro angoli del globo.
Una delle aree della matematica in cui Erdős è stato un pioniere è un settore filosoficamente affascinante del calcolo combinatorio detto teoria di Ramsey. L’idea sottesa a tale teoria è che l’assoluto disordine è impossibile. Graham, suo intimo amico, ritiene che possano passare secoli prima che gran parte del lavoro suo e di Erdős nella teoria di Ramsey trovi significative applicazioni in fisica, ingegneria o in qualunque ambito del mondo reale.
 
COMMENTO:
Interessante excursus attraverso la storia della matematica, vista dagli occhi di uno dei più grandi matematici. Lettura scorrevole e semplice anche per i non addetti ai lavori. 
L’aspetto interessante è il fatto che, accanto alla storia della vita di Erdős, ci sono anche ampi brani riguardanti la storia della matematica, dalla soluzione dell’Ultimo Teorema di Fermat alla vita del migliore amico di Erdős, Graham, con il quale collaborò per gran parte della sua vita.
Pubblicato in Libri
Etichettato sotto
Pagina 6 di 6

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy