Ministero dell'Istruzione, dell'Università e della Ricerca

Istituto di Istruzione Superiore "Decio Celeri" Lovere (BG)

Liceo Classico - Scientifico - Artistico

CLASSE 5^ A LICEO SCIENTIFICO

10 Dicembre 2016

Teoremi della continuità

COGNOME _____NOME

- 1. Determina per quale valore $k \in \mathbb{R}^+$ la funzione $f(x) = (e^{3x} 1) \ln(1 + 3x^k)$ è un infinitesimo di ordine 5 per $x \to 0$.
- 2. Calcola i seguenti limiti, tenendo presente il principio di sostituzione degli infinitesimi, la gerarchia degli infiniti e il principio di sostituzione degli infiniti:
 - A. $\lim_{x\to 0} \frac{e^{3x}-1}{\ln (1-5x)}$

B. $\lim_{x\to 0} \frac{x^3 + 1 - \cos x}{x^2 (1 - x^2)}$

C. $\lim_{x \to 2} \frac{sen(x-2)}{e^{x^2-4}-1}$

D. $\lim_{x \to 0} \frac{sen^2 3x}{\ln^2 (1 + 2x)}$

 $\mathsf{E.} \quad \lim_{x \to +\infty} \left(x + \ln \frac{1}{x} \right)$

 $F. \quad \lim_{x \to +\infty} \frac{x^2 + \ln^3 x}{x^{10} + e^x}$

G. $\lim_{x \to +\infty} \frac{\sqrt{x} + e^{2x} + \ln 5x}{e^{3x} + x^3}$

- $H. \quad \lim_{x \to +\infty} x^{\frac{1}{2x}}$
- 3. È data la funzione $f(x) = \frac{2x^2 + 3x a}{ax^2 + bx 4}$. Determina i parametri a e b in modo che x = 1 sia un punto di discontinuità di terza specie per f(x).
- 4. Determina i punti di discontinuità e la relativa specie delle seguenti funzioni:

_____/6

/ 8

- $A. \quad f(x) = 2^{\frac{x^2}{x-2}}$
- B. $f(x) = \frac{1}{1 2x}$
- C. $f(x) = \begin{cases} \frac{e^x 1}{x} & x > 0\\ 1 + \sqrt[3]{x} & x < 0 \end{cases}$
- 5. Enuncia il teorema dei valori intermedi. Mostra, con un grafico, che una funzione può soddisfare la tesi del teorema, ma non le sue ipotesi.
- 6. Stabilisci per quali valori del parametro k la funzione $f(x) = kx^5 x + 2k + 2$ ha sicuramente almeno uno zero nell'intervallo [1; 2].
- 7. Determina le equazioni degli asintoti della funzione $f(x) = \frac{x^2 x 1}{2x 4}$.
- 8. Determina, se possibile, per quali valori del parametro k il grafico della funzione:

$$f(x) = \frac{x^2 + x + 1}{kx^2 + 2(1 - k)x + k - 3}$$

- A. non ha asintoti verticali;
- B. ha come asintoto orizzontale la retta y 3 = 0;
- C. ha come asintoto orizzontale l'asse x.

1	2	3	4	5	6	7	8	9	10
x=0	0 <x<7,8< th=""><th>7,8<u><</u>x<12,8</th><th>12,8<u><</u>x<17,8</th><th>17,8<u><</u>x<24</th><th>24<x<27,8< th=""><th>27,8<u><</u>x<32,8</th><th>32,8<u><</u>x<37,8</th><th>37,8<u><</u>x<45</th><th>x=45</th></x<27,8<></th></x<7,8<>	7,8 <u><</u> x<12,8	12,8 <u><</u> x<17,8	17,8 <u><</u> x<24	24 <x<27,8< th=""><th>27,8<u><</u>x<32,8</th><th>32,8<u><</u>x<37,8</th><th>37,8<u><</u>x<45</th><th>x=45</th></x<27,8<>	27,8 <u><</u> x<32,8	32,8 <u><</u> x<37,8	37,8 <u><</u> x<45	x=45

