Visualizza articoli per tag: cosmologia

Mercoledì, 02 Agosto 2017 20:13

Cosmicomic

La scienza non percorre sempre strade lineari: tra continui errori e contraddizioni, progredisce lentamente, con il contributo di chiunque sia appassionato e abbia le competenze necessarie. Il percorso esplorato da Balbi e illustrato da Piccioni è quello che ha portato al Big Bang e alla scoperta della radiazione di fondo. Quando Arno Penzias e Bob Wilson, nel 1964, si trovarono a fare i conti con il disturbo che ostacolava il funzionamento della loro antenna presso i laboratori Bell, non immaginavano certo che questo li avrebbe portati a vincere il Premio Nobel nel 1978. Nel fumetto, gli autori hanno scelto di far loro ripercorrere le tappe non solo della propria scoperta, ma anche del cammino che li ha preceduti: diciotto scienziati in totale, da Hubble a Einstein, da Lemaitre a Gamow, che con le proprie intuizioni riescono a trovare una spiegazione adeguata dell’origine dell’universo. Nel percorso, trova spazio anche l’errore commesso da Einstein, che non ha solo negato la teoria dell’universo in espansione, ma, dall’alto della sua presunzione (in questo caso non si può definire altrimenti!), ha accusato Lemaitre di avere un senso fisico “veramente abominevole”.

Com’è giusto che sia, dato il genere usato per presentare la storia, le verità storiche si mescolano ad alcune finzioni narrative: possiamo salvare i concetti fisici contenuti nella storia e i personaggi protagonisti, ma non sempre le circostanze e le modalità in cui si sono verificati gli eventi coincidono con la realtà, per quanto, come ci dice lo stesso Balbi, “le (poche) licenze narrative non hanno snaturato la realtà storica o la sostanza dei fatti”. Da sottolineare, inoltre, il lavoro meticoloso svolto per procurare “le documentazioni fotografiche d’epoca dei luoghi dove sono avvenuti gli eventi, ogni volta che ciò è stato possibile.”

In appendice, è possibile consultare una breve biografia dei diciotto personaggi coinvolti.

Pubblicato in Libri
Venerdì, 02 Agosto 2013 16:06

Il piccolo libro delle stringhe

TRAMA:

In questo libro, l’autore ci offre alcune delle idee principali sull’odierna teoria delle stringhe: i primi tre capitoli sono di carattere introduttivo, perché ci spiegano i concetti cruciali per la comprensione delle stringhe, come l’energia, la meccanica quantistica e la relatività generale. Nei successivi tre capitoli, l’autore cerca di rendere ragionevole e ben motivata la teoria delle stringhe e gli ultimi due sono dedicati ai tentativi più attuali di connessioni tra la teoria delle stringhe e gli esperimenti con le collisioni di particelle ad alta energia.

Nonostante nella teoria delle stringhe siano estremamente importanti le equazioni, l’autore ha scelto di “mettere in parole” le equazioni più importanti, consapevole del fatto che comportano calcoli di cui non è possibile dare una trattazione divulgativa. Eppure la matematica della teoria delle stringhe, per quanto sia importante, non riduce la teoria a una collezione di equazioni: “Le equazioni sono come le pennellate di un dipinto: senza di queste il quadro non ci sarebbe, ma un quadro è più di un’ampia collezione di pennellate.”

Si ritiene che la Teoria del Tutto sia data dalla teoria delle stringhe, ma non ha conferme sperimentali ed inoltre con le sue dimensioni supplementari, le fluttuazioni quantistiche e i buchi neri, non è per nulla semplice, tanto che persino gli esperti ammettono di non comprenderla. Per la teoria delle stringhe, gli oggetti fondamentali che costituiscono la materia non sono particelle, ma stringhe: un elettrone è in realtà una stringa, che vibra e ruota, ma troppo piccola persino per essere investigata dai più avanzati acceleratori di particelle oggi disponibili.

La teoria delle stringhe è una teoria inventata “all’indietro”, visto che gli scienziati ne possedevano delle parti, elaborate in maniera pressoché completa, ma non capivano il significato profondo dei risultati ottenuti. Dopo una prima formula, scoperta nel 1968, che descriveva come le stringhe non influissero l’una sull’altra, negli anni Settanta e nei primi anni Ottanta la teoria vacillava: non descriveva adeguatamente le forze nucleari, pur incorporando la meccanica quantistica. Le stringhe non riuscivano a dare una risposta esauriente: fu così che vennero introdotte le brane, oggetti che si dispiegano in molteplici dimensioni. A metà degli anni Novanta, la teoria fece un ulteriore passo avanti, ma continuavano e continuano a esserci difficoltà nel realizzare una teoria completa ed esauriente. Il lavoro del Large Hadron Collider (LHC) di Ginevra – dove vengono accelerati e fatti collidere protoni a velocità prossime a quella della luce – potrebbe dire se la teoria delle stringhe sia sulla buona strada, grazie all’eventuale scoperta di molte particelle, tra le quali il cosiddetto bosone di Higgs.

L’autore mostra tutta la sua abilità nelle metafore utilizzate per spiegare i passaggi più complessi: la sovrapposizione di due rimi differenti in Fantasia-Improvviso di Chopin diventa la metafora per descrivere la meccanica quantistica, la caduta durante l’arrampicata in artificiale sulla via Cryogenics diventa utile per descrivere la caduta all’interno di un buco nero, la civiltà romana è a fondamento della nostra civiltà esattamente come la teoria delle stringhe è alla base del mondo che conosciamo e la distanza che ci separa dai Romani in termini temporali è la stessa che ci separa dal controllo sperimentale della teoria in termini di energia, il valzer è utile per spiegare la dualità di stringa e le cordate di scalatori forniscono una buona analogia per il bosone di Higgs.

 

COMMENTO:

Un libro interessante, per quanto molto complesso: nonostante la buona volontà dell’autore, nonostante le sue intuizioni e le sue metafore, la teoria delle stringhe resta comunque una teoria complessa, con l’elevato numero di dimensioni, le D-brane, la dualità di stringa e tutto il resto. Per questo motivo a volte è un po’ complesso: diciamo che una lettura superficiale non aiuta a cogliere in pieno quanto descritto, oltre ad avere una buona concentrazione, bisogna sempre tenere a portata di mano carta e penna… 

Pubblicato in Libri
Venerdì, 02 Agosto 2013 16:02

La teoria del tutto

TRAMA:
La nascita dell’universo è una questione sulla quale si è discusso fin dai tempi più remoti, ma solo sul finire degli anni Venti tale questione entrò finalmente nel campo di indagine proprio della scienza, grazie ad Hubble che dimostrò che la Via Lattea non è l’unica galassia. A partire dai suoi studi, si osservò la frequenza delle onde luminose provenienti dalle altre galassie: risulta ridotta, a significare il fatto che esse si stanno allontanando da noi. 
La fede in un universo statico era forte e radicata, tanto che persino Einstein tentò di evitare la predizione di un universo dinamico, introducendo una costante cosmologica. Fridman, invece, cercò di spiegare l’universo dinamico, partendo da due presupposti: l’universo è identico in qualunque direzione guardiamo e da qualunque punto lo osserviamo. Secondo i due assunti di Fridman, tre diversi modelli predicono l’evoluzione dell’universo e i dati attualmente disponibili suggeriscono che, probabilmente, l’universo continuerà ad espandersi per sempre. 
I tre modelli di Fridman presentano un tratto in comune: il big bang, oggi generalmente accettato. 
Proprio come nel big bang, all’interno di un buco nero ci deve essere una singolarità di densità infinita. Il buco nero è una stella di massa e densità sufficientemente elevate con un campo gravitazionale talmente forte che neppure la luce riesce a sfuggirne. 
Nei buchi neri, l’area dell’orizzonte degli eventi non può mai decrescere: tale proprietà ricorda molto da vicino il comportamento di quella quantità fisica chiamata entropia, che misura il grado di disordine di un sistema. Essa è infatti una misura dell’entropia del buco nero, che deve perciò avere anche una temperatura. Un corpo con una temperatura superiore allo zero assoluto deve emettere un determinato tasso di radiazioni, quindi per riuscire ad osservare i buchi neri, potremmo cercare i raggi gamma che essi emettono. Quand’anche la ricerca di buchi neri avesse esito negativo ci fornirebbe comunque una serie di importanti informazioni sui primissimi stadi della vita dell’universo. 
Man mano che l’universo si espande, la temperatura della sua radiazione continua a diminuire. Il quadro di un universo che, dopo un inizio estremamente caldo, è andato via via raffreddandosi ed espandendosi, si trova in accordo con tutti i dati di cui siamo oggi in possesso. Ma tante domande non hanno ancora risposta e, presa da sola, la teoria della relatività generale non può risolvere il problema. Infatti, in corrispondenza della singolarità del big bang, la relatività generale stessa e tutte le altre leggi della fisica verrebbero a perdere la loro validità. Per comprendere l’origine dell’universo, abbiamo bisogno della teoria quantistica, le cui leggi scientifiche possono mantenere la loro validità in qualunque situazione. Con la teoria quantistica della gravità emerge la possibilità che lo spazio-tempo abbia un’estensione finita pur senza avere una singolarità che lo delimiti al pari di un confine, di un margine esterno. Lo spazio-tempo sarebbe simile alla superficie della Terra, con l’unica differenza di avere due dimensioni in più. Per questo, non c’è più la necessità di determinare cosa sia avvenuto in corrispondenza del confine: l’universo sarebbe autonomo, non sarebbe stato creato, né verrebbe mai distrutto.
Restano altre domande: perché il tempo procede in avanti? Ciò è in qualche modo legato al fatto che l’universo si sta espandendo? Le leggi della fisica non distinguono tra passato e futuro, eppure, nella vita di tutti i giorni, sperimentiamo una grande differenza tra la direzione del tempo in avanti e quella all’indietro. 
La freccia del tempo psicologica e quella termodinamica hanno sempre la stessa direzione: il nostro senso soggettivo della direzione del tempo è quindi determinato dalla freccia termodinamica. Ma la direzione del tempo nella quale il disordine aumenta è la stessa in cui l’universo si espande? Sì, nonostante non si possa stabilire se l’universo abbia avuto inizio in uno stato molto omogeneo e ordinato, oppure molto eterogeneo e disordinato. 
Sarebbe molto difficile costruire di getto una teoria unificata completa in grado di dare una spiegazione a ogni cosa, ma si sono compiuti notevoli progressi scoprendo delle teorie parziali. Ciononostante, la speranza resta quella di trovare una teoria unificata, coerente e completa, che includa tutte le teorie parziali come semplici approssimazioni. 
Einstein dedicò la maggior parte dei suoi ultimi anni all’infruttuosa ricerca di una teoria unificata, ma si rifiutava di credere alla realtà della meccanica quantistica. Invece sembra che il principio di indeterminazione costituisca un tratto fondamentale dell’universo in cui viviamo: una teoria unificata dovrà necessariamente incorporarlo.
Una teoria unificata del tutto rivoluzionerebbe la comprensione che la gente comune ha delle leggi che governano l’universo, ma lascerebbe comunque senza risposta la domanda: perché l’universo esiste?
 
COMMENTO:
Testo semplice, visto che spiega anche i concetti più complessi in modo che possano essere compresi da tutti. Sicuramente, il primo capitolo, con la storia della storia dell’universo e l’ultimo, con alcune considerazioni matematiche, bene si prestano ad essere presentati anche in classe. 
Pubblicato in Libri

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy