

Istituto Istruzione Superiore "Decio Celeri" Lovere (BG)

Liceo Artistico – Classico – Scientifico – Sportivo

Via Nazario Sauro, 2 – 24065 Lovere (BG) – Tel. 035 983177 Fax 035 964022 – C.F. 81004920161 – Cod.Mecc. BGIS00100R www.liceoceleri.it *e-mail*: bgis00100r@istruzione.it *posta certificata*:bgis00100r@pec.istruzione.it

CLASSE 5[^] A LICEO SCIENTIFICO

2 febbraio 2022

Derivate

COGNOME ______ NOME _____

1. Determina l'insieme dei punti in cui la funzione
$$y = \begin{cases} x^2 + 2x + 2 & \text{se } x \leq 0 \\ \frac{1}{16}x^2 - \frac{1}{2}x + 2 & \text{se } x > 0 \end{cases}$$
 è derivabile.

2. Data la funzione
$$y = \frac{x^3}{3} + x \ln x$$
, trova per quale valore di x si ha: $y'''(x) = -2$.

3. Spiega perché è certo che tutte le rette tangenti alla curva di equazione
$$y = \frac{5+2x}{x}$$
 formino con l'asse x un angolo ottuso.

- 4. Data la funzione $y = ax^4 + bx^3 + cx + d$, determina i valori dei parametri a, b, c e d, sapendo che la funzione ha un punto stazionario nell'origine e ha tangente 2x 4y 1 = 0 nel suo punto di ascissa $\frac{1}{2}$. Determina, inoltre, l'ascissa del suo ulteriore punto stazionario.
- 5. Data la funzione $y = \frac{ax^2 + bx + 6}{x c}$, trova a, b e c, sapendo che, nel punto (0; -2), il grafico ha per tangente una retta parallela alla retta 4x + 3y 5 = 0 e che ha per asintoto obliquo una retta parallela alla retta 3x y = 0.
- 6. Sia data la funzione $y = \sin x$. Indicate con A e B le intersezioni con l'asse y della tangente e della normale alla curva nel punto C di ascissa $\frac{4}{3}\pi$, determina l'area del triangolo ABC.

1	2	3	4	5	6	7	8	9	10
x = 0	(0;8)	[8; 13[[13; 18[[18; 24[[24; 28[[28; 33[[33; 38[[38; 45[x = 45